
ETSI ETR 298

TECHNICAL September 1996

REPORT

Source: ETSI TC-MTS Reference: DTR/MTS-00033-1

ICS: 33.020

Key words: SDL, ASN.1, MSC, methodology

Methods for Testing and Specification (MTS);
Specification of protocols and services;

Handbook for SDL, ASN.1 and MSC development

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
ETR 298: September 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETR 298: September 1996

Contents

Foreword ...5

1 Scope ..7

2 References..7

3 Definitions and abbreviations ..8
3.1 Definitions ..8

3.1.1 External definitions ..8
3.1.2 Internal definitions ...8

3.2 Abbreviations ...8

4 Introduction..9

5 Formalization of SDL (with ASN.1 and MSC)..9
5.1 Criteria to start formalization..9
5.2 Formalization steps..10
5.3 Structure steps (S-steps) ...10

5.3.1 Step S:1 Boundary and environment of the system10
5.3.2 Step S:2 Discrete system communications...11
5.3.3 Step S:3 System parts...12
5.3.4 Step S:4 Communication paths between parts ...13
5.3.5 Step S:5 Associating signals to communication paths..................................13
5.3.6 Step S:6 Information hiding and sub-structuring ...14
5.3.7 Step S:7 Block constituents...15
5.3.8 Step S:8 Local signals in a block...15

5.4 Behaviour steps (B-steps) ...15
5.4.1 Step B:1 Set of signals to a process ...16
5.4.2 Step B:2 Skeleton processes ..17
5.4.3 Step B:3 Informal processes ...17
5.4.4 Step B:4 Complete processes...18

5.5 Data steps (D-steps)..19
5.5.1 Step D:1 Signal parameters ..19
5.5.2 Step D:2 Process and procedure parameters...20
5.5.3 Step D:3 Signal variables ..20
5.5.4 Step D:4 Formal transitions...21
5.5.5 Step D:5 Output and create parameters ...21
5.5.6 Step D:6 Data signatures ..22
5.5.7 Step D:7 Informal data description..23
5.5.8 Step D:8 Formal data description..24
5.5.9 Step D:9 Complete data formalization...24

5.6 Results of formalization ...24
5.7 Criteria for adequate formalization...25

6 Examples...25
6.1 Presentation of the PUMI example ..25
6.2 PUMI example: the stepwise formalization..26

6.2.1 Structure-steps (S-steps) ..26
6.2.1.1 Step S:1 Boundary and environment of the system26
6.2.1.2 Step S:2 Discrete system communications27
6.2.1.3 Step S:3 System parts ...28
6.2.1.4 Step S:4 Communication paths between parts29
6.2.1.5 Step S:5 Associating signals to communication paths29
6.2.1.6 Step S:6 Information hiding and sub structuring..................30
6.2.1.7 Step S:7 Block constituents...30
6.2.1.8 Step S:8 Local signals in a block...34

6.2.2 Behaviour-steps (B-steps)...35

Page 4
ETR 298: September 1996

6.2.2.1 Step B:1 Set of signals to a process 35
6.2.2.2 Step B:2 Skeleton processes.. 36
6.2.2.3 Step B:3 Informal processes... 38
6.2.2.4 Step B:4 Complete processes .. 42

6.2.3 Data-steps (D-steps) .. 43
6.2.3.1 Step D:1 Signal parameters.. 43
6.2.3.2 Step D:2 Process and procedure parameters 50
6.2.3.3 Step D:3 Signal variables.. 51
6.2.3.4 Step D:4 Formal transitions .. 53
6.2.3.5 Step D:5 Output and create parameters 54
6.2.3.6 Step D:6 Data signatures.. 54
6.2.3.7 Step D:7 Informal data description...................................... 54
6.2.3.8 Step D:8 Formal data description 55
6.2.3.9 Step D:9 Complete data formalization 55

Annex A: Overview of ETS 300 414 .. 56

A.1 Introduction ... 56

A.2 Normative interfaces... 57

A.3 Selection of SDL concepts.. 57

A.4 Selection of Message Sequence Chart concepts... 58

A.5 Selection of ASN.1 concepts .. 60

Annex B: Overview of methodology ... 61

B.1 The methodology activities ... 61

B.2 The requirement collection activity ... 62

B.3 The classification activity .. 63

B.4 The draft design activity.. 64

B.5 The formalization activity .. 65

B.6 The derivation of a validation model activity ... 66

B.7 The documentation activity ... 66

Annex C (informative): List of rules of ETS 300 414 [1] ... 68

Annex D: List of rules in formalization.. 71

Annex E : Allowed symbols... 73

Annex F: Bibliography.. 76

History ... 77

Page 5
ETR 298: September 1996

Foreword

This ETSI Technical Report (ETR) has been produced by the Methods for Testing and Specification
(MTS) Technical Committee of the European Telecommunications Standards Institute (ETSI).

This ETR is the result of the preliminary MTS studies for the production of a comprehensive methodology
for the specification of ETSI protocols and services when using SDL. Such studies were performed by the
PT60 Phase 1 and 2 in 1993 - 1994 with TC-MTS supervision. With respect to the initial ambitions, the
present ETR concentrates on giving guidance on the SDL formalization phases, which were felt the more
coherent urgent and important after the publication of ETS 300 414 [1].

ETRs are informative documents resulting from ETSI studies which are not appropriate for European
Telecommunication Standard (ETS) or Interim European Telecommunication Standard (I-ETS) status. An
ETR may be used to publish material which is either of an informative nature, relating to the use or the
application of ETSs or I-ETSs, which is immature and not yet suitable for formal adoption as an ETS or an
I-ETS.

Page 6
ETR 298: September 1996

Blank page

Page 7
ETR 298: September 1996

1 Scope

The purpose of this handbook is to provide guidance to rapporteurs and Project Team experts in applying
some methodological steps when developing functional specifications within European
Telecommunications Standards (ETSs). The handbook can be used by experienced standards
developers as well as those who do not have advanced knowledge of SDL.

ETSs specifying services or protocols should use the ITU Specification and Description Language, SDL,
defined in ITU-T Recommendation Z.100 [3] and Message Sequence Charts defined in
ITU-T Recommendation Z.120 [6] to specify behaviour. The Abstract Syntax Notation One formalism
defined in ITU-T Recommendations X.208 [9] and X.680 [16] may be used in combination with SDL to
specify data in compliance with rules defined in ITU-T Recommendation Z.105 [4].

This handbook is based on the work presented in ETS 300 414 [1].

2 References

For the purposes of this ETR, the following references apply:

[1] ETS 300 414 (1995): "Methods for Testing and Specification (MTS); Use of SDL
in European Telecommunications Standards Rules for testability and facilitating
validation".

[2] CEN/CENELEC Internal Regulations (1991): Part 3 "Rules for the drafting and
presentation of European Standards (PNE-Rules)".

[3] ITU-T Recommendation Z.100 (1994): "CCITT Specification and Description
Language (SDL)".

[4] ITU-T Recommendation Z.105 (1994): "SDL combined with ASN.1".

[5] ITU-T Recommendation Z.110 (1989): "Criteria for the use and applicability of
formal description techniques".

[6] ITU-T Recommendation Z.120 (1993): "Message Sequence Chart".

[7] ITU-T Recommendation I.130 (1988): "Method for the characterization of
telecommunication services supported by an ISDN and network capabilities of
an ISDN".

[8] ITU-T Recommendation Q.65 (1988): "Stage 2 of the method for the
characterization of services supported by an ISDN)".

[9] ITU-T Recommendation X.208 (1988): "Specification of Abstract Syntax
Notation One (ASN.1)".

[10] ITU-T Recommendation X.209 (1988): "Specification of basic encoding rules for
Abstract Syntax Notation One (ASN.1)".

[11] ITU-T Recommendation X.290: "OSI conformance testing methodology and
framework for protocol Recommendations for CCITT applications; General
concepts".

[12] ITU-T Recommendation X.291: "OSI conformance testing methodology and
framework for protocol Recommendations for CCITT applications; Abstract test
suite specification".

[13] ITU-T Recommendation X.292: "OSI conformance testing methodology and
framework for protocol Recommendations for CCITT applications; The Tree and
Tabular Combined Notation (TTCN)".

Page 8
ETR 298: September 1996

[14] ITU-T Recommendation X.293: "OSI conformance testing methodology and
framework for protocol Recommendations for CCITT applications; Test
realisation".

[15] ITU-T Recommendation X.294: "OSI conformance testing methodology and
framework for protocol Recommendations for CCITT applications;
Requirements on test laboratories and clients for the conformance assessment
process".

[16] ITU-T Recommendation X.680 (1993): "Information technology - Abstract
Syntax Notation One (ASN.1) - Specification of basic notation".

3 Definitions and abbreviations

3.1 Definitions

3.1.1 External definitions

This technical report uses the following terms defined in other documents:

Abstract Syntax Notation One (ITU-T Recommendation X.208 [9]).
Message Sequence Chart (ITU-T Recommendation Z.120 [6]).
Specification and Description Language (ITU-T Recommendation Z.100 [3]).
Tree and Tabular Combined Notation (ITU-T Recommendation X.292 [13]).

3.1.2 Internal definitions

For the purposes of this ETR, the following definitions apply:

application domain: The field of activity in which the system under specification will operate.

documentation: The activity of creating an ETS from the formal SDL description and other information
generated during application of this methodology, in accordance with certain standards for format and
style.

formalization: The stepwise activity in which a formal SDL description of a system is produced.

formal SDL description: An SDL description which conforms to ITU-T Recommendation Z.100 [3] and
does not contain any SDL "informal text" and which, thus, can be interpreted by automatic tools.

informal SDL description: An SDL description which conforms to ITU-T Recommendation Z.100 [3] but
which includes some SDL "informal text". and which, thus, cannot be interpreted by automatic tools.

validation: The process, with associated methods, procedures and tools, by which an evaluation is made
that a standard can be fully implemented, conforms to rules for standards, and satisfies the purpose
expressed in the record of requirements on which the standard is based; and that an implementation that
conforms to the standard has the functionality expressed in the record of requirements on which the
standard is based.

validation model: A detailed version of a specification, possibly including parts of its environment, that is
used to perform formal validation.

3.2 Abbreviations

For the purposes of this ETR, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One [9]
MSC Message Sequence Chart [6]
SDL Specification and Description Language [3]
TTCN Tree and Tabular Combined Notation [13]

Page 9
ETR 298: September 1996

4 Introduction

The need to validate deliverables and the associated need to ensure the testability of specifications are
the driving factors in developing methodologies to be used for the production of ETSs.
ITU-T Recommendation Z.100 [3] has been identified as a suitable specification language which also
fulfils requirements for uniform and comprehensible documentation based on a standard.

ETS 300 414 [1] identifies instructions, rules and guidelines for the development of SDL specifications
within ETSI to ensure that they are testable and can be validated.

TC-MTS and in particular Project Team 60 described a methodology which covers the complete
development process for ETSs using SDL. It is described as a set of coupled activities which can be
combined and which range from informal specification, through specification design and finally to formal
specification. The use of SDL is supplemented by the incorporation of two other formalisms,
ITU-T Recommendation X.208 [9] and ITU-T Recommendation Z.120 [6].

This ETR is a handbook for rapporteurs and other writers of deliverables. It describes a "hands-on"
process based on ETS 300 414 [1] and other TC-MTS work. It includes action steps to identify and
resolve specification problems and high-risk issues early in the formalization of a specification. This
process is described in clause 5.

Overviews of ETS 300 414 [1] and other TC-MTS investigations are provided in annexes A and B
respectively.

Summaries of all rules applied in the formalization process are listed in annexes C and D.

Graphical symbols allowed in ITU-T Recommendation Z.100 [3] and ITU-T Recommendation Z.120 [6]
formalisms are described in annex E.

5 Formalization of SDL (with ASN.1 and MSC)

The purpose of stepwise formalization is to produce a formal specification of a system to be used as the
basis for an ETS and for validation. ETSI supports the use of ITU-T Recommendation Z.100 [3] as the
main formalism for describing behaviour with ITU-T Recommendation Z.120 [6] to specify message flow
relationships and ITU-T Recommendation X.208 [9] to describe the data contents of messages. Figure 1
describes the input and output of the formalization activity.

- previous information (usually natural language and/or drawings);
- previous descriptions of systems and parts of systems.

FORMALIZATION

Input

Output

a formal SDL description:
- containing as much formalized information as possible (including MSC and ASN.1);
- changes to input information if necessary.

Figure 1: Input and output of formalization

5.1 Criteria to start formalization

Before formalization can start, the following information should exist:

1) a description of the entities that are to be modelled in ITU-T Recommendation Z.100 [3] (Functional
Entity descriptions, information flows and/or MSCs, service elements, ASN.1 data descriptions,
action descriptions, etc.);

2) a description of the concepts and names for the main elements of the system;
3) a description of each of the normative interfaces.

Page 10
ETR 298: September 1996

5.2 Formalization steps

The formalization process is divided into steps as follows:

- Structure steps (S-steps);
- Behaviour steps (B-steps);
- Data steps (D-steps).

In the descriptions of these steps there are subclauses on instructions, rules and guidelines.

Parts of the input information may already be in ITU-T Recommendation Z.100 [3],
ITU-T Recommendation X.208 [9] and ITU-T Recommendation Z.120 [6]. In such cases the formalization
may be simplified as these parts need only to be checked (and changed if needed) to the language rules
and the rules given for each step below.

Before the individual steps are described it is worth considering how they can be applied.

The steps are presented in a sequence which can be followed in strict order. However, this is not always
necessary. Depending on the user's experience in SDL modelling, the complexity of the application
domain and the quality and completeness of the input information, the application of particular steps can
proceed in any order and can be interleaved. The important aspect to note is that all steps need to be
completed to achieve the final result. Formalization is an iterative process and it is to be expected that
some steps will have to be repeated and intermediate models changed, improved and refined.

During the application of these steps it is important that a record is maintained of any questions raised and
decisions taken. An important reason for this is the need for elements of SDL descriptions to be traced
back to requirements.

To simplify the description of the Structure, Behaviour and Data steps, certain keywords from the SDL
syntax have been used in the text. These are printed in bold so that they may be easily identified. The
formal definitions of these are in ITU-T Recommendation Z.100 [3] annex B.

5.3 Structure steps (S-steps)

The purpose of the structure steps (S-steps) is to define in ITU-T Recommendation Z.100 [3] the external
and internal interfaces of the system and to partition the system into SDL blocks.

5.3.1 Step S:1 Boundary and environment of the system

Instructions:

1) identify the boundaries between the system to be described and its environment;

2) find a suitable name for the system;

3) draw an SDL system diagram with the identified name and explain the system and its relation to the
environment informally in a comment within the SDL system diagram.

Rules:

Rule 1 The system boundary defines what is going to be specified (described). Communicating entities
within a system have to be specified (described) irrespective of whether they are normative or
informative. Entities outside the boundaries are assumed to exist, but cannot be described in
SDL. The communication is possible only by means of exchanged discrete messages. The
message in SDL is called signal ;

Rule 2 The unit for time data should be recorded in a comment in the system diagram.

Page 11
ETR 298: September 1996

Guidelines:

1) the SDL system may be a closed system with no external interfaces. In this case, the SDL system
describes the behaviour that is the subject of an ETS and the entities that communicate with it.
These entities are informative. The normative interfaces for the ETS may need to be internal
interfaces of the SDL system;

2) if MSCs have already been produced, identify the axes corresponding to entities considered to
belong to the system and, separately, the axes for entities that belong to the external environment.
The latter then have no formal description in the SDL specification (or are provided only as
informative parts of the system);

3) if the system has any timers, the unit of time needs to be defined. Normally, one unit equals
1 millisecond or one unit equals 1 second are suitable values. It is also useful to define SDL
synonyms for useful multipliers such as "seconds" and "minutes".

Example:

- subclause 6.2.1.1 illustrates this step.

5.3.2 Step S:2 Discrete system communications

Instructions:

1) identify entities outside of the system whose communication with a system is a topic of
specification;

2) identify the information flow in terms of discrete messages to be communicated between the
system and each outside communicating entity;

3) model these messages by signal s defined in the system;

4) state the relation between each signal and entities external to the system;

5) state the purpose for each signal in a comment with the signal definition;

6) place related (often all) signal s for one entity in one direction into a signallist ;

7) include the signal definitions and signallists in the system diagram.

Rules:

Rule 3 The textual definitions of a diagram should be placed in text symbols inside diagrams.

NOTE: Placing the SDL text in a text symbol on a diagram clearly identifies the text as SDL
and also identifies the SDL diagram where the text belongs.

Rule 4 Each type of definition (for example: signal definitions, signallist definitions, data definitions,
etc.) should be placed in a different text symbol. If textual definitions occupy more than 50 % of
a diagram, it should have separate pages for each type of definition.

Guidelines:

1) the number of signal s will be smaller if related events are communicated with one signal with
parameters (for example: one can introduce one signal for each error cause or one signal for all of
them with a parameter which specifies which error cause occurred);

2) when a signal with a parameter is introduced, identify or name a corresponding sort of data. The
sort of data should correspond to a named ASN.1 or SDL type;

Page 12
ETR 298: September 1996

3) the signal definitions and signallist definitions are usually too large to include in a text symbol on
the first SDL page of the system diagram. Additional pages should be added to the system diagram
to contain these textual descriptions. Lengthy statements about the relationship between signal s
and external entities, or descriptions that contain informal drawings should not be placed in the SDL
diagram. Such statements should be referenced from the SDL. Shorter statements should be
placed with the appropriate SDL definitions;

4) to assist documentation, signallist definitions are placed before the definition of signal s used in the
signallist . Data definitions are placed after signal definitions. The definitions are grouped by
placing related definitions in one text symbol.

Example:

- subclause 6.2.1.2 illustrates this step.

5.3.3 Step S:3 System parts

Instructions:

1) identify the main parts within the system and draw them as blocks in the system;

2) find a suitable name for each block and describe the block and its relation to its environment (its
enclosing structure) informally in a comment within the block.

NOTE: Steps S:3 to S:6 are used repeatedly when a block is decomposed into further blocks.
When the steps are re-applied, the "system" being considered is actually an SDL
block, and the word "system" should be considered replaced by the phrase "enclosing
block". The difference between a block and the system is that the signal s (signallists
and data) used to communicate with the surrounding structure are defined outside a
block but inside a system.

Rules:

Rule 5 There should be no more than five blocks at the system level (or directly enclosed within a
block).

Rule 6 A definition should have the smallest scope that includes all uses of the defined item.

Rule 7 If a block (process or procedure) is informative and is not part of an enclosed informative block
(process or procedure), it should have the annotation "informative" in the diagram referencing it
or in its referenced diagram or in both places.

Guidelines:

1) blocks are entities that contain a behaviour aspect with internal states;

2) blocks delimit visibility. For this reason, signal s, sorts and types that are used only within a block
should be defined within that block, so that information is hidden from higher levels and therefore
makes these levels easier to understand. This principle also applies for steps S:6 and S:7 and is
expressed as a general principle for information hiding in rule 6;

3) a block is "informative" if it has no behaviour that is to be normative. The purpose of an informative
block is to make the system complete, so that the function of the system can be:
- understood by its use of and interaction with these informal parts;
- executed and analysed, leading to a better quality specification and supporting validation.
A block can be informative only if all the enclosed blocks, processes and procedures (including
remote procedures) are informative. Once a block (process or procedure) is marked informative it is
implied that all the enclosed blocks, processes and procedures are informative and it is not
necessary to mark these blocks, processes and procedures as "informative".

NOTE: "Informative" is not the same as "informal". In the formal SDL description both
informative and normative parts should be formal (that is, expressed formally).

Page 13
ETR 298: September 1996

4) when there are a large number of blocks directly enclosed within the system (or a block) some of
them can be grouped together and encapsulated in a block as in step S:6.

Example:

- subclause 6.2.1.3 illustrates this step.

5.3.4 Step S:4 Communication paths between parts

Instructions:

1) identify the channels needed between blocks and the boundary of the diagram and between blocks
within the diagram;

2) for each channel, identify the direction(s) of communication;
3) associate a signallist with each direction of the channel;
4) choose a signallist name related to the function and usage of the communication.

Rules:

Rule 8 There should be only one channel between two blocks.
Rule 9 Every channel that is normative should have the comment "normative" attached.

Guidelines:

1) the signallists identified in step S:2 correspond to one or more channels leading to a point on the
system boundary. What from the outside should be regarded as one interface, may be more than
one channel coming from different blocks. Also there can be more than one signallist per channel.
Each point on the boundary represents the communication with a different external entity. There
can be one or more channels connecting such a point to the blocks in the SDL system diagram.
Realistic modelling requirements such as independent interfaces are taken into consideration;

2) blocks are connected to each other and/or to the environment by channels according to the flows of
information. The system may contain a single block or more than one but there are no good
reasons for a block diagram to contain a single block;

3) typical communication cases represented in MSC help to identify the channels;

4) special effects that depend on the delay or non delay of each channel should not normally be used.
If only one channel is used between two blocks then signal s sent to one block arrive in the same
order at the other block. Channels should be assumed to have a delay, unless there are
requirements to communicate without delay;

5) if the communication on a channel needs to have specific messages with a specific format and
encoding, the channel is "normative". Channels that are internal to the system and do not identify a
particular interface for product testing or other purposes are usually informative. The
communication on informative channels contributes to the behaviour of the system, but there could
be an alternative system with different channels or communication which has the same behaviour.

Example:

- subclause 6.2.1.4 illustrates this step.

5.3.5 Step S:5 Associating signals to communication paths

Instructions:

1) for each signallist name, identify the appropriate signal s;
2) name and define each new signal .

Rules:

Rule 10 No more than three signal s (or signallists) should be listed in a signallist symbol, instead use
a signallist attached to the channel. In principle it is better to use signallists consistently.

Page 14
ETR 298: September 1996

Rule 11 The signallists , signal s and data used in all communication of a system should be defined in
one (or more) text symbol(s) separate from other definitions.

Guidelines:

1) although SDL allows the signal list symbol (that is [...]) associated with a channel to contain
explicit lists of signal names, this is not recommended. A list of signal s is usually needed in more
than one place, and it is easier to modify the list if it is defined once in a signallist;

2) consider whether to redefine the signallist associated with a channel at higher levels, making use
of a new signallist . This can improve the structure and clarity of the SDL. The signallist definition
needs to be within the highest level diagram in which it is used;

3) if there are new signal s used for communication between blocks, they need to be defined in the
unit (system or block) that contains communicating blocks.

Example:

- subclause 6.2.1.5 illustrates this step.

5.3.6 Step S:6 Information hiding and sub-structuring

Instructions:

1) consider each block within the current diagram in turn and decide whether the block should contain
blocks or processes;

2) if the block is to contain blocks, recursively apply the sequence of steps S:3 to S:6 to the block,
regarding it as a (sub) system on its own and introducing new required signal s, blocks, channels
and signallist ;

3) otherwise, apply step S:7 to divide the block into processes.

Rules:

Rule 12 The diagrams should be nested by reference rather than direct enclosure.
Rule 13 The number of channels from each block should be no more than five.

Guidelines:

1) if the system is large, some blocks can be considered a system on their own, and can be further
partitioned according to the rules given for the system. This results in nesting of blocks. Each block
can then be elaborated as described above. An entity that has behaviour as the main aspect and is
not further partitioned is a good candidate to be a process; therefore, the directly enclosing entity is
a block. An entity that contains further partitioned entities is usually a block to be partitioned;

2) it may not be clear whether the contents of a block should be blocks or processes, in which case a
division into blocks is initially attempted. If it is difficult to partition a block further, it should probably
be a process;

3) recursive application of this step results in a number of levels. Even if the system is complex there
should not be more than three levels of blocks. For example, if each level has 3 to 4 blocks with
2 to 5 processes in each leaf block, then there will be over 100 processes in the whole SDL system;

4) if there are more than five obvious process definitions within a block, then the block should be
divided into two or more blocks with fewer processes. The interactions in MSC between axes
corresponding to processes can help to identify natural "clusters'' of processes for each
unpartitioned block;

5) a block tree diagram should be drawn.

Page 15
ETR 298: September 1996

Example:

- subclause 6.2.1.6 illustrates this step.

5.3.7 Step S:7 Block constituents

Instructions:

1) identify the separate entities with behaviour for the block that has been chosen in step S:6 to be
divided into processes and define these entities as the processes of the block;

2) find a suitable name for each process and describe it and its relation to its environment (the
enclosing block) informally in a comment within the process reference;

3) for each process define its initial and maximum number of instances;

4) use signal routes to connect the process sets to channels at the block boundary.

Rules:

Rule 14 For each block, at least one process should have its initial number of instances greater than
zero, so that it can create other instances in the block.

Rule 15 The number of process definitions in each block should be no more than five.

Guidelines:

1) the signal routes within the block can be derived in a similar way to the channels in steps S:3 and
S:4.

2) in the case where a process has been encapsulated in a "dummy" block, the unpartitioned block
contains a process description of just one type and the relation to its environment is derived from
the external interface of the block.

Example:

- subclause 6.2.1.7 illustrates this step.

5.3.8 Step S:8 Local signals in a block

Instructions:

1) identify the signal s between the processes local to the block;
2) define at the block level any of these signal s that are additional (not defined external to the block);
3) identify any imported and exported procedure of processes in the block and the corresponding

remote procedure definition, and define these at the block (or block type) level.

Guideline:

1) In the special case with a "dummy" block, there will be no additional signal s at the block level.

NOTE: A “dummy block” is the one containing only one process.

Example:

- subclause 6.2.1.8 illustrates this step.

5.4 Behaviour steps (B-steps)

These steps are to describe the behaviour of components in terms of communication, but without
providing a formal definition of the data covered by data steps. This subclause describes these steps for
an SDL process, but both these steps and the data steps are also generally appropriate for defining the
behaviour of an SDL procedure.

Page 16
ETR 298: September 1996

5.4.1 Step B:1 Set of signals to a process

Instructions:

1) Identify the input alphabet of the process, called the signalset of the process, which is done by
identifying any:
- signal s that can be received by the process;
- exported procedure of the process. This is a case where the process acts as a server in a

client-server model where the corresponding signal is implicit but the remote procedure
name can be considered as part of the alphabet;

- timer expirations are received in the same manner as ordinary signal s. Timers belong to a
process and must be declared in text symbols of the process. The duration to which a timer
is set should be given a symbolic name using a synonym or a variable (of duration type).

Guidelines:

1) although the signalset can usually be simply derived from the enclosing block diagram, the purpose
of this step is to review the signalset considering only the current process. If it is decided to change
the set of signal s from other processes, the corresponding block diagrams must be changed. The
processes that send the signal s will need to be updated (probably at some other time), if they have
already been formalized. One source of signal s not shown on the block diagram is the process
sending signal s to itself or other instances of the same process definition;

2) the signalset is used when deciding the behaviour of the process in each state in step B:4. It is
suggested that a record is kept of the signalset if this cannot be derived automatically from tools
used for SDL;

3) for a procedure the signal s of the enclosing process are used, but new signal s may be identified,
that need to be added to the process signalset (identified in this step but for the enclosing process).

Example:

- subclause 6.2.2.1 illustrates this step.

Page 17
ETR 298: September 1996

5.4.2 Step B:2 Skeleton processes

Instructions:

1) produce MSC for at least the "typical" use cases. This is very important both for identifying signal s
and describing basic behaviour;

2) produce a skeleton process by mapping from MSC considering only "typical" uses:

2.1 starting from the start symbol of the process, build a tree of states by considering "normal"
state changes of the process;

2.2 build the process tree by branching at each state based on each input that is consumed but
not ignored in the MSC and following each by a transition (including outputs and creates) to
different states;

2.3 identify a state as different from other states if it has a different set of signal s that it
consumes or saves or if it has a different response to a signal ;

2.4 include time supervision (set and reset) and the corresponding timer input;
2.5 as the tree is drawn, identify where the process returns to the same state and make the tree

into a graph.

3) draw this graph as a process diagram;

4) determine whether the process has two or more disjoint sets of interfaces for different behaviour
parts of the process that can be interleaved, then — if the behaviours are independent — divide the
process into multiple processes.

NOTE: If the behaviours are coupled by the use of common data, dividing the process into
processes requires one or more remote procedures to access the data.

Rules:

Rule 16 Spontaneous transition should not be used in normative parts of the standard.

Rule 17 The MSC should either be correct traces of the handling of messages by the SDL system or be
clearly annotated to indicate how and why they differ from the SDL behaviour.

Guidelines:

1) two processes with N and M states respectively, when combined as one process has N × M states.
Splitting such a process therefore produces two much simpler processes that are easier to
understand;

2) when a process (or procedure) is informative, there may be spontaneous transitions starting with
none that model user behaviour or other unpredictable events.

Example:

- subclause 6.2.2.2 illustrates this step.

5.4.3 Step B:3 Informal processes

Instructions:

1) identify combinations of use cases;
2) identify what information the process stores and consider whether this is implicit in the process

states or whether internal data is needed;
3) use this information to define the actions of each process;
4) add tasks or procedures and possibly more decisions in transitions, but use only informal-text in

tasks and decisions;
5) if a procedure is used, give it a meaningful name and (later) use steps B:1 to D:9 to define it.

Page 18
ETR 298: September 1996

Guidelines:

1) use existing MSC and generate new MSC to identify combinations of uses;

2) decide whether to use a task or procedure to describe the information processing in a transition,
although this may be changed later. Use a procedure if it is anticipated that the information is
needed from another process or if the task is likely to be complex or to depend on several stored
data values; otherwise choose a task. If a procedure is chosen it may be appropriate to consider the
parameters (one or more parameters with defined data sorts);

3) sometimes it is obvious that the same actions are done in several places in the process. These
actions can be collected and made into a procedure;

4) if procedure has states, it should be kept in mind that only signal s mentioned in the state are dealt
with explicitly, all other signal s to a process that has called a procedure may be implicitly consumed
if not mentioned in a save symbol.

Example:

- subclause 6.2.2.3 illustrates this step.

5.4.4 Step B:4 Complete processes

Instructions:

1) identify at each state and for each item in the signalset (signal or remote procedure) whether the
signal (or remote procedure call) is input by the process or saved;

2) if the item is input, determine the transition taken (it may be an implicit transition back to the same
state);

3) continue instruction 1 and instruction 2 until there are no states at the end of a transition that have
not been considered so that all items in the signalset have been considered for every state;

4) analyse first each process and then combinations up to the whole SDL system to check for
unwanted properties and redesign to avoid them if necessary.

Rules:

Rule 18 All states in a process should be reachable from the start of the process.

Rule 19 A procedure that is exported by a process (to be used as a remote procedure) should not be
saved in every state of that process.

Rule 20 Each signal received by the process should have at least one input leading to a non empty
transition.

Guidelines:

1) a state signal matrix (in ITU-T Recommendation Z.100 [3] appendix I.9.4) can be used to check the
action for each signal in each state. As a new state is identified, the matrix is extended. This matrix
can also help identify when two of the defined states lead to the same behaviour and can be
combined, or two signal s have the same next states. In these cases it may be possible to reduce
the number of signal s or states;

2) a state overview diagram (in ITU-T Recommendation Z.100 [3] appendix I.9.3) can be drawn to get
an overview of the behaviour of the process. If the process is not normally intended to terminate
then usually every state should be reachable from every other state, but this need not be the case
as there may be initial states for the start up of the process and final states for termination;

Page 19
ETR 298: September 1996

3) there is a limit to how much analysis is practical on a single process. More interesting results from
analysis are obtained as more processes are "complete" can be analysed in combination in a block
or as the whole system. The unwanted properties that can be detected (such as unreachable
states, deadlock and live-lock) will depend on the complexity of the system and the tools available;

4) for analysis it can be assumed that every decision contains the SDL any value construct.

NOTE: Analysis of anything other than a simple process is difficult without tools to generate
the state space and then check it. Even tools have difficulty with large numbers of
processes or a very complex process. This is therefore not a trivial step, but analysis
at this stage saves a lot of wasted time and effort if redesign is found necessary and is
one of the major benefits of using SDL.

Example:

- subclause 6.2.2.4 illustrates this step.

5.5 Data steps (D-steps)

The purpose of the data steps is to provide a formal definition of the data used in the processes. Without
formal data any decision in the behaviour and operators used in expressions have uncertain results.

The first two steps (D:1 to D:2) concern interface values. The next three steps (D:3 to D:5) concern
variables within processes. The remaining steps (D:6 to D:9) concern the formal definition of new sorts of
data. These last steps are needed if new sorts of data have new operators. For this reason D:6 to D:9 are
only occasionally necessary and should be unnecessary if ITU-T Recommendation X.208 [9] has been
used to define data.

Step D:1 is applied to the system as a whole, whereas steps D:2 to D:9 can be applied to each process or
procedure.

The sorts of data used should be defined using SDL combined with ASN.1 as defined in
ITU-T Recommendation Z.105 [4].

5.5.1 Step D:1 Signal parameters

Instructions:

1) identify the values to be conveyed by signal s, starting with signal s at the system level;
2) look for predefined sorts of data to represent the identified values;
3) extend the signal definitions with the sort of data;
4) identify and define new sorts of data if necessary;
5) timer expiration signal s may have parameters like any other signal . Sort of parameters must be

defined when timers are defined.

Rules:

Rule 21 If bit tables have been used to define data then these should be converted to
ITU-T Recommendation X.208 [9] or ITU-T Recommendation Z.100 [3].

Rule 22 The names of existing sorts of data should not be used for new sorts of data even if they have
different scopes.

NOTE: If the sorts of data have the same scope, SDL language rules do not allow the names
to be the same.

Page 20
ETR 298: September 1996

Guideline:

1) ITU-T Recommendation X.208 [9] provides a formal description of the data used for signal s, and
therefore the corresponding sort of data can be used directly. If ASN.1 has not been used, a
decision must be made whether to define the sorts of data in ASN.1 or ITU-T Recommendation
Z.100 [3]. ASN.1 should be used if the encoding of data is important or if the data is on an interface
with the environment. SDL may be used if no particular encoding is required and if the sort of data
is used only within the SDL system.

Example:

- subclause 6.2.3.1 illustrates this step.

5.5.2 Step D:2 Process and procedure parameters

Instructions:

1) identify the sorts of data needed for parameters of the process (or procedure);
2) state the role of each parameter in a comment in the heading of the process (or procedure);
3) procedure parameters can be defined as IN or IN/OUT. IN should be used to pass values from the

calling process to the called procedure. IN/OUT are used to pass values in both directions.

Rule:

Rule 23 A process parameter should not contain the PId of the process that has created it because this
value is returned by parent operator.

Guidelines:

1) within a process, a parameter is treated as a variable. The only difference between a process
parameter and a variable with a default value is that a process parameter can receive a different
value for each instance of the process. Typically this value is the identity of some other entity such
as a PId or an equipment number;

2) process parameters are often needed to establish information necessary for addressing of signal s.
The creator of the process sends as a parameter the information about the requesting process, so
that the created process knows whom to send a signal if needed.

Example:

- subclause 6.2.3.2 illustrates this step.

5.5.3 Step D:3 Signal variables

Instructions:

1) add parameters to inputs according to signal definitions;
2) define variables as required to receive the input values;
3) state the role of each variable in a comment.

Rule:

Rule 24 A signal parameter should not contain the PId of the process that has sent the signal because
this is value is returned by sender operator.

Guidelines:

1) check that each parameter defined in a signal definition is used in at least one input or is required
for communication with the environment;

2) with each signal reception the value returned by sender operator may change. Sometimes it may
be necessary to save the PId of the communicating partner.

Page 21
ETR 298: September 1996

Example:

- subclause 6.2.3.3 illustrates this step.

5.5.4 Step D:4 Formal transitions

Instructions:

1) replace the informal text in tasks, decisions and answers with formal assignments, formal
expressions, formal range expressions and procedure calls and identify any new operators used in
the formal expressions to be added to the sorts of data in step D:6;

2) define additional variables and synonyms as required;
3) define additional procedures as required;
4) add parameters to procedure calls according to procedure definitions.

Rule:

Rule 25 A value or decision that is non-deterministic (using any) should always have a comment
attached explaining how the choice is made.

Guidelines:

1) the previous informal text in symbols may be useful as comments attached to the symbols;

2) if the value of a function used in an expression depends only on the actual parameters, there is a
choice of making the function an operator or a procedure. If the result depends on other data, it
must be a procedure. If the function behaviour depends on data from another process, it may be
appropriate to make it a remote procedure or decide how this information is obtained. To obtain the
information may require additional parameters to existing signal s and storing this information or
communication in the procedure, possibly with additional signal s;

3) the definition of a procedure is treated in a similar way to a process through steps B:1 to D:9,
including the possibilities of having a procedure called internally and a procedure nested within the
procedure;

4) when the normative behaviour is independent of some data in informative processes or procedures,
the any construct can be used to create random values for this data or random decisions in
informative processes or procedures. In this way the informative parts can model situations where
data and behaviour are unpredictable. Spontaneous transitions are used if the time ("when")
something happens is unpredictable, and any value is used if what happens is unpredictable;

5) the PId of the newly created process is available in the creating process as this value is returned by
offspring operator. In most cases this value must be saved because it would be lost as new
instances get created. Also, the value returned can be NULL if creation was not successful;

6) synonyms are a means of giving a symbolic name to values used in various places (parameters,
timers, decisions etc.). Using values directly should be strictly avoided;

7) in the process that creates other process instances it may be necessary to maintain the list of
created processes PIds.

Example:

- subclause 6.2.3.4 illustrates this step.

5.5.5 Step D:5 Output and create parameters

Instructions:

1) add expressions to outputs using introduced variables and synonyms;
2) add addressing information to every output;
3) add actual parameters to create actions.

Page 22
ETR 298: September 1996

Rules:

Rule 26 If a parameter is omitted in an output, there should not be a corresponding input that expects a
value for this parameter.

Rule 27 Addressing information should always be defined in an output.

Guidelines:

1) check that each parameter sent in an output is used in at least one possible input or is required for
communication with the environment. As compared with the check that a signal definition
parameter is used in step D:3, this is a check that a signal instance parameter may be used;

2) addressing should be done using the keyword TO if signal is sent to a particular process instance
identified with its PId given after the keyword. The PId value can be obtained from some variable of
the type PId where it was previously stored or by applying operators sender, parent, offspring or
self. These operators return the PId of the process instance from which a signal was received, the
PId of the creator that created this process instance, the PId of the latest process instance created
or the PId of the process instance itself, respectively. The operator self is used for sending signal s
to its own input queue, either from the body of the process or from its procedures. Instead of an PId
expression a process name may be mentioned, but only if the process has one and only one
instance, otherwise the signal is delivered to an unspecified process instance;

3) instead of specifying addresses using a keyword TO a keyword VIA could be used. This keyword is
to be followed by a channel, signalroute or gate identifier. This restricts the choice of entities that
can receive a signal and is often used when the communication between two peer entities is being
established;

4) if expression VIA ALL is used signal s are sent to all possible destinations.

Example:

- subclause 6.2.3.5 illustrates this step.

5.5.6 Step D:6 Data signatures

Instructions:

1) identify and define all the sorts of data and values (synonyms) which need to be defined;

2) if some values are identified as dependent on the actual system installation, express them by using
external synonyms;

3) for each required sort of data create a newtype or syntype with a meaningful name or define an
ASN.1 type;

4) identify any new operators that need to be defined;

NOTE: If there are no new operators the formalization process is complete.

5) for the newtype s with new operators, list the signatures (the literals and the operators with
parameter sorts) and identify (in a comment) a set of operators and literals that can be used to
represent all possible values (the "constructors").

Guidelines:

1) external synonyms can be used to provide dimensions for the number of processes, the number of
data items in an array, etc. An external declared synonym will get its value at system start-up and
the transition options expression will be tested at system creation time;

2) it is recommended that option transitions and selects be avoided. If it is really necessary to provide
a choice in an ETSI specification, some guidelines for specifying optional functionality and
alternative behaviour are given in ETS 300 414 [1] annex C clauses 4 and 5;

Page 23
ETR 298: September 1996

3) inherit as much as possible from ITU-T Recommendation Z.100 [3] predefined data, ASN.1 "useful
types" and ITU-T Recommendation Z.105 [4] predefined data. The objective is to avoid having to
define the behaviour for new operators. If new operators are defined, they should be defined using
an operator definition. The introduction of new operators can be avoided by:

- using the ASN.1 definitions as defined in ITU-T Recommendation Z.105 [4];
- using struct for records;
- using a predefined generator such as array or string;
- using a syntype if the set of data values is intended to be a subset of and compatible with a

sort of data;
- giving a sort a new name with syntype if the purpose is to introduce a more meaningful

name;
- giving a sort a new name with newtype which inherits all if the purpose is to have a sort of

data with the same properties as an existing sort of data, but not compatible with the existing
sort;

- using a user defined generator that avoids defining axioms by using other generators.

4) the operators are usually listed in the newtype for the sort of data corresponding to the result of the
operator. Sometimes an operator produces a value of a sort of data defined in a different context,
for example an integer or a Boolean. In this case the operator is listed under the newtype of (one of)
the parameter sorts of data;

5) a set of operators and literals that can be used to represent all possible values is a set of
constructors of the sort of data. These constructors are used in later steps if (and only if) it is
necessary to define operator properties using SDL axioms. The set of constructors is not usually
unique, nor is it always obvious. The chosen set should be just sufficient to define all values so that
if one constructor is deleted then the set of values is different. The choice can be difficult;

6) although this step produces a formal SDL description, if new operators are introduced, the
functionality may not be what was intended, because the user defined sorts of data for these
operators may have "too many'' values. Step D:7 corrects this deficiency, but makes interpretation
depend on informal text. Steps D:8 and D:9 make the description formal.

Example:

- subclause 6.2.3.6 illustrates this step.

5.5.7 Step D:7 Informal data description

Instruction:

1) add informal axioms in the form of informal text to the newtype definitions.

Guidelines:

1) the names of the operators should correspond to their function and therefore assist the description
of the function;

2) although the result is correct SDL, only the static properties can be completely analysed. The
reason is that the dynamic properties depend on the interpretation of the axioms, which can only be
done informally. However, in an actual support environment, some additional features or
assumptions can make this level of description sufficient.

Example:

- subclause 6.2.3.7 illustrates this step.

Page 24
ETR 298: September 1996

5.5.8 Step D:8 Formal data description

Instructions:

1) for each operator signature add an operator definition in the form of an operator diagram if possible;

NOTE: If all the operators can be defined in this way, the formalization is complete.

2) if some of the operators cannot be defined by operator diagrams, formalize the axioms by replacing
informal axioms with formal ones that state the essential properties of the operators;

3) use the text of informal axioms as comments to the formal axioms.

Rule:

Rule 28 SDL axioms should not be used to define operator properties.

Guideline:

1) Operators can be defined algorithmically using an operator diagram or axiomatically. The operator
diagram (algorithmic) form is recommended because it is easier to understand.

Example:

- subclause 6.2.3.8 illustrates this step.

5.5.9 Step D:9 Complete data formalization

This step should be used only in exceptional circumstances.

Instruction:

1) add axioms (or operator definitions) to the data newtype definitions, until they are complete (that is,
until all expressions containing non-constructor operators and literals can be rewritten into
expressions containing only constructor operators and literals).

Guideline:

1) detailed guidelines for this step are given in ITU-T Recommendation Z.100 [3] annex I clause 5.

Example:

- subclause 6.2.3.9 illustrates this step.

5.6 Results of formalization

When formalization has been done, there is a set of results as defined below. These should be reviewed
to determine whether formalization can be considered complete according to a checklist of criteria defined
in the next subclause.

A complete model provides a complete requirements specification of the system.

Some of the formalization steps are intended to produce an executable model, except possibly for some
sorts of data that can usually be made executable by using a support tool interactively or with this data in a
programming language. The benefit of an executable model is that by running the model the feasibility and
functionality of system can be demonstrated. The disadvantage of this model is that some aspects of the
system have to be explicitly defined so that the system is executable. For example, data passed through
the system without modification has to be modelled in some explicit way (for example a character string)
so that the model can be executed, but for the ETSI specification this may be the abstract concept of a
data unit.

Page 25
ETR 298: September 1996

The SDL model is executable so that execution of the model can be used in validation and the model can
run against conformance tests (using ITU-T Recommendation X.292 [13]) to ensure that these are
compatible with the model.

5.7 Criteria for adequate formalization

The result of formalization should be checked against the following criteria:

1) the formal SDL description should conform to the rules stated in ETS 300 414 [1], listed also in
Annex C of this handbook (which implies conformance to ITU-T Recommendation Z.100 [3],
ITU-T Recommendation Z.105 [4], and ITU-T Recommendation Z.120 [6]);

2) the SDL should conform to the rules 1 to 28 in this clause;

3) it should have been shown (by a thorough design review or audit, and by execution with defined
input sequences) that the formal SDL description is a satisfactory model of the functionality of the
system described by the collected requirements.

6 Examples

It is more appropriate and cost effective to consider the standard developer education in the formalization
process using computer based learning. Thus, the present examples exist in an electronic version and so
are all supported by a tool.

The tool may help the standard developer to execute these examples and so to simulate and validate
them in order to show him the efficiency of using a formal SDL notation. The simulation may be a
motivating activity by which the standard developer can see the examples "living" and how "things" work,
detecting how many other "things" can miss.

Incoming Private User Mobility (PUMI) (being developed under ETSI Work Item DE/BTC-01051, "Private
Telecommunication Network (PTN); Private User Mobility (PUM) - Call Handling - Additional Network
Features - Functional Capabilities and Information Flows") has been chosen as a general example just to
illustrate the stepwise formalization process described in clause 5.

6.1 Presentation of the PUMI example

Private User Mobility (PUM) provides Private Integrated Services Network (PISN) users with personal
mobility services irrespective of the terminal used within the PISN. It enables each PISN user subscribing
to the PUM service to participate in a user-defined set of services and to initiate and receive calls on the
basis of a unique, personal PUM number throughout the PISN at any terminal, wired or cordless,
irrespective of geographic location. In a PISN supporting PUM there exists no permanent association
between PUM users and terminals.

Incoming PUM Call Handling (PUMI) enables calls to be directed to a PUM user within the PISN. As there
is no predetermined access for the connection of a PUM user to the PISN, the directing of such calls
requires that information regarding the location of the user is available within the PISN.

Page 26
ETR 298: September 1996

6.2 PUMI example: the stepwise formalization

6.2.1 Structure-steps (S-steps)

6.2.1.1 Step S:1 Boundary and environment of the system

System 1(1)

/*
 * Step S:1 Boundary and environment of the system
 *
 * 1. Identify the boundaries between the system to be described and its environment.
 * 2. Find a suitable name for the system.
 * 3. Draw an SDL system diagram with the identified name and explain the system and its
 * relation to the environment informally in a comment within the SDL system diagram.
 */

/*
 * PUMI - Private User Mobility Incoming Call Handling
 *
 * PUMI directs incoming calls to a PUM user within
 * a PTN regardless of the PUM user's geographical location within the PTN,
 * provided the PUM user's location is known.
 */

Figure 2: Step S:1 Boundary and environment of the system

Page 27
ETR 298: September 1996

6.2.1.2 Step S:2 Discrete system communications

System 1(1)

/*
 * Step S:2 Discrete system communications
 *
 * 1. Identify entities outside of the system whose communication with a system is a topic of
 specification.
* 2. Identify the information flow in terms of discrete messages to be communicated between
 the system and each outside communicating entity.
* 3. Model these messages by signals defined in the system.
* 4. State the relation between each signal and entities external to the system.
* 5. State the purpose for each signal in a comment with the signal definition.
* 6. Place related (often all) signals for one entity in one direction into a signallist.
* 7. Include the signal definitions and signallists in the system diagram.
*/

/*
 * PUMI - Private User Mobility Incoming Call Handling
 *
 * PUMI directs incoming calls to a PUM user within
 * a PTN regardless of the PUM user's geographical location within the PTN,
 * provided the PUM user's location is known.
 */

SIGNAL
 SETUPreq,
 SETUPresp,
 RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

Figure 3: Step S:2 Discrete system communications

Page 28
ETR 298: September 1996

6.2.1.3 Step S:3 System parts

System 1(1)

/*
 * Step S:3 System parts
 *
 * 1. Identify the main parts within the system and draw them as blocks in the system.
 * 2. Find a suitable name for each block and describe the block and its relation to its
 * environment (its enclosing structure) informally in a comment within the block.
 */

/*
 * PUMI - Private User Mobility Incoming Call Handling
 *
 * PUMI directs incoming calls to a PUM user within
 * a PTN regardless of the PUM user's geographical location within the PTN,
 * provided the PUM user's location is known.
 */

SIGNAL
 SETUPreq,
 SETUPresp,
 RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

PUMI

The PUMI model shall comprise the following functional entities (FEs).
 FE1: PUM incoming call execution
 FE2: PUM incoming call detection and control
 FE3: Routing information provision
 FE4: Visited location control and execution
 FE5: PUM user's service agent

Figure 4: Step S:3 System parts

Page 29
ETR 298: September 1996

6.2.1.4 Step S:4 Communication paths between parts

System 1(1)

/*
 * Step S:4 Communication paths between
 *
 * 1. Identify the channels needed between blocks and the boundary of the
 * and between blocks within the
 * 2. For each channel, identify the direction(s) of
 * 3. Associate a signallist with each direction of the
 * 4. Choose a signallist name related to the function and usage of the
 */

/*
 * PUMI - Private User Mobility Incoming Call
 *
 * PUMI directs incoming calls to a PUM user
 * a PTN regardless of the PUM user's geographical location within the
 * provided the PUM user's location is
 */

PUMI

The PUMI model shall comprise the following functional entities
 FE1: PUM incoming call
 FE2: PUM incoming call detection and
 FE3: Routing information
 FE4: Visited location control and
 FE5: PUM user's service

(SETUPrspns SETUPreq

SIGNAL
 SETUPreq,
 SETUPresp,
 RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

Figure 5: Step S:4 Communication paths between parts

6.2.1.5 Step S:5 Associating signal s to communication paths

Step S: 5 is illustrated in subclause 6.2.1.4.

Page 30
ETR 298: September 1996

6.2.1.6 Step S:6 Information hiding and sub structuring

This step is not applicable for the PUMI example.

6.2.1.7 Step S:7 Block constituents

System 1(1)

/*
 * Step S:7 Block
 *
 * 1. Identify the separate entities with behaviour for the block that has
 * chosen in step S:6 to be divided into processes, and define these
 * as the processes of the
 * 2. Find a suitable name for each process and describe it and its
 * environment (the enclosing block) informally in a comment within the process
 * 3. For each process define its initial and maximum number of
 * 4. Use signal routes to connect the process sets to channels at the block
 */

/*
 * PUMI - Private User Mobility Incoming Call
 *
 * PUMI directs incoming calls to a PUM user
 * a PTN regardless of the PUM user's geographical location within the
 * provided the PUM user's location is
 */

PUMI

The PUMI model shall comprise the following functional entities
 FE1: PUM incoming call
 FE2: PUM incoming call detection and
 FE3: Routing information
 FE4: Visited location control and
 FE5: PUM user's service

envCh

(SETUPrspns SETUPreq

SIGNAL
 SETUPreq,
 SETUPresp,
 RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

Figure 6: Step S:7 Block constituents

Page 31
ETR 298: September 1996

FE1 FE3

FE5FE4

ra rb

rc

rc

Home Functions

Visitor Functions PUM User
Access

FE2

Figure 7: S:7 Functional model for the handling of an incoming call to a PUM user

FE1 FE2 FE3 FE4 FE5

CCA CC CCACC CC

rc

ra rb rc

S ET UP
req.ind. S ET UP

req.ind.

S ET UP
req.ind.

ENQUIRE
req.ind.

ENQUIRE
resp.conf.
(accepted)DIVERT

req.ind.

DIVERT
resp.conf.
(accepted))

RELEAS E
req.ind.

INFORM
req.ind.
S ET UP
req.ind. INFORM

req.ind.

S ET UP
resp.conf.S ET UP

resp.conf.

201

202

203

101

102

103

301

401
402

501

502

Figure 8: S:7 Information flow sequence for successful PUMI operation

Page 32
ETR 298: September 1996

MSC successfulPUMI
env PUMI_FE1 PUMI_FE2 PUMI_FE3 PUMI_FE4 PUMI_FE5

PUMI_idle

SETUPreq

SETUPreq

ENQUIREreq
WAIT_for_

DIVERT

WAIT_for_
ENQUIRE_
RESPONSE

ENQUIREresp

DIVERTreq

DIVERTresp WAIT_for_
DIVERT_

RESPONSE

SETUP_INFreq

SETUP_INFreq

Figure 9: S:7 MSC for successful PUMI operation

Page 33
ETR 298: September 1996

Block PUMI 1(1)

PUMI_FE1 (1, 1)
/* incoming call
 * execution */

PUMI_FE2 (1, 1)
/* incoming call detection and control */

PUMI_FE3 (1, 1)
/* Routing information provision */

PUMI_FE4 (1, 1)
/* Visited location
 * control and execution */

PUMI_FE5 (1, 1)
/* user's service agent */

r1

(SETUPrespns)

SETUPreq

ra

SETUPreq,
(DIVERTrspns)

RELEASEreq,
DIVERTreq

rb

ENQUIREreq

(ENQUIRErspns)

rc

(SETUPrspns) SETUP_INFreq

rd

SETUP_INFreq

SETUPresp,
SETUP_REJECTreq

Figure 10: Step S:7 Block PUMI

Page 34
ETR 298: September 1996

6.2.1.8 Step S:8 Local signal s in a block

Block PUMI Signals(2)

 /*
 * The signal definitions are here without parameters.
 * Parameters will be defined in later steps.
 */

SIGNAL DIVERTreq;
SIGNAL
 DIVERTresp,
 DIVERTerr;

SIGNALLIST DIVERTrspns =
 DIVERTresp,
 DIVERTerr;

SIGNAL ENQUIREreq;
SIGNAL
 ENQUIREresp,
 ENQUIREreject;

SIGNALLIST ENQUIRErspns =
 ENQUIREresp,
 ENQUIREreject;

SIGNAL SETUP_INFreq; SIGNAL SETUP_REJECT_req;

Figure 11: Step S:8 Local signal s in a block

Page 35
ETR 298: September 1996

6.2.2 Behaviour-steps (B-steps)

6.2.2.1 Step B:1 Set of signal s to a process

Process PUMI_FE1 1(1)

/* incoming call execution */

/* SIGNALs definition
 * =================
 *
 * Inputs:
 *
 * SETUPreq
 * SETUPresp
 * DIVERTreq
 * RELEASEreq
 *
 * Outputs:
 *
 * SETUPreq
 * SETUPresp
 * DIVERTresp
 * DIVERTerr
 * SETUP_INFreq
 * RELEASEreq
 */

Figure 12: Step B:1 Set of signal s to a process

Page 36
ETR 298: September 1996

6.2.2.2 Step B:2 Skeleton processes

Process PUMI_FE1 PUMI_idle(3)

/* incoming call execution */

PUMI_idle

SETUPreq

SETUPreq

WAIT_for_DIVERT

Figure 13: Step B:2 Process PUMI_FE1: PUMI_idle

Page 37
ETR 298: September 1996

Process PUMI_FE1 WAIT_for_DIVERT(3)

WAIT_for_DIVERT

DIVERTreq

ANY Pum call possible

DIVERTresp

SETUP_INFreq

WAIT_for_
SETUP

_RESPONSE

DIVERTerr

RELEASEreq

PUMI_idle

(TRUE) (FALSE)

Figure 14: Step B:2 Process PUMI_FE1: WAIT_for_DIVERT

Page 38
ETR 298: September 1996

6.2.2.3 Step B:3 Informal processes

System Signals(2)

/*
 * Step B:3 Informal processes
 *
 * 1. Identify combinations of use cases.
 * 2. Identify what information the process stores and consider whether this is implicit
 * in the process states or whether internal data is needed.
 * 3. Use this information to define the actions of each process.
 * 4. Add tasks or procedures and possibly more decisions in transitions, but use only
 * informal-text in tasks and decisions.
 * 5. If a procedure is used, give it a meaningful name and (later) use steps B:1 to D:9 to
 * define it.
 */

/* SETUPreq
 * is used to request establishment of a connection
 */
SIGNAL SETUPreq (destNo,
 origNo,
 connType,
 destSubAddr,
 origSubAddr,
 channelId,
 callHistory);
SIGNAL SETUPresp (connNo,
 connType,
 connSubAddr,
 channelId,
 callHistory,
 destCategory,
 dateTime);
SIGNAL RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

Figure 15: Step B:3 System signals

Page 39
ETR 298: September 1996

Block PUMI Signals(2)

SIGNAL DIVERTreq (hostNo,
 connType,
 origNo,
 origSubAddr,
 origName,
 destNo,
 destSubAddr,
 callHistory,
 origCategory);

SIGNAL
 DIVERTresp,
 DIVERTerr;

SIGNALLIST DIVERTrspns =
 DIVERTresp,
 DIVERTerr;

SIGNAL ENQUIREreq (destNo,
 connType,
 origCategory);

SIGNAL ENQUIREresp (origId,
 enquireResult,
 divertAddr,
 diverSubscrpOpt,
 destName);

SIGNAL ENQUIREreject(errorCause);

SIGNALLIST ENQUIRErspns =
 ENQUIREresp,
 ENQUIREreject;

SIGNAL SETUP_INFreq; SIGNAL SETUP_REJECT_req;

Figure 16: Step B:3 Block signal s

Page 40
ETR 298: September 1996

Process PUMI_FE1 WAIT_for_DIVERT(3)

WAIT_for_DIVERT

DIVERTreq (DivertVal)

possiblePUMIcall

DIVERTresp
TO PUMI_FE2

'Stimulate release
of original basic

call leg'

SETUP_INFreq (userId)
TO PUMI_FE4

WAIT_for_
SETUP

_RESPONSE

DIVERTerr
TO PUMI_FE2

RELEASEreq

PUMI_idle

(TRUE) (FALSE)

Figure 17: Step B:3 Process PUMI_FE1: WAIT_for_DIVERT

Page 41
ETR 298: September 1996

Process PUMI_FE3 1(1)

/* Routing information provision */

PUMI_idle

ENQUIREreq (enquireArgs) From PUMI_FE2

PUMuserKnown

SS_PUMRinProgress

ServiceCompatible

PUMuserLocationKnown

PUMuserHasSS_CFUactivated

'Insert PUM user
hosting address

into ENQUIRE confirm

ENQUIREresp
TO PUMI_FE2

-

'Insert CFUactive,
diverted-to address

and PUM user's name
into ENQUIRE confirm'

'insert LocationNotKnown
into ENQUIREerrorCause'

ENQUIREreject
TO PUMI_FE2

'Insert incompatibleServices
into ENQUIRE errorCause'

'Insert CollisionWithSS_PUMR
into ENQUIRE errorCause'

'Insert PUMuserUnknown
into ENQUIRE errorCause'

(True)

(False)

(True)

(True)

(False)

(True)

(False)

(False)

(True)

False)

Figure 18: Step B:3 Process PUMI_FE3

Page 42
ETR 298: September 1996

6.2.2.4 Step B:4 Complete processes

Step B:4 is illustrated in subclause 6.2.2.3.

Page 43
ETR 298: September 1996

6.2.3 Data-steps (D-steps)

6.2.3.1 Step D:1 Signal parameters

System Definitions(3)

SYNTYPE PUMnoT integer;
SYNTYPE connTypeT integer;
SYNTYPE subAddrT integer;
SYNTYPE categoryT integer;
SYNTYPE dateTimeT integer;

NEWTYPE SETUPreqArgs STRUCT
 destNo PUMnoT;
 origNo PUMnoT;
 connType connTypeT;
 destSubAddr subAddrT;
 origSubAddr subAddrT;
 channelId integer;
 callHistory charstring;
ENDNEWTYPE SETUPreqArgs ;

NEWTYPE SETUPrespArgs STRUCT
 connNo integer;
 connType connTypeT;
 connSubAddr subAddrT;
 channelId integer;
 callHistory charstring;
 destCategory categoryT;
 dateTime dateTimeT;
ENDNEWTYPE SETUPrespArgs;

Figure 19: Step D:1 System definitions

Page 44
ETR 298: September 1996

System Signals(3)

/* SETUPreq
 * is used to request establishment of a connection
 */
SIGNAL SETUPreq (SETUPreqArgs);
SIGNAL SETUPresp (SETUPrespArgs);
SIGNAL RELEASEreq;

SIGNALLIST SETUPrspns =
 SETUPresp,
 RELEASEreq;

Figure 20: Step D:1 System signals

Page 45
ETR 298: September 1996

Block PUMI Definitions(3)

NEWTYPE DivertReqArgs STRUCT
 hostNo PUMnoT;
 connType connTypeT;
 origNo PUMnoT;
 origSubAddr subAddrT;
 origName charstring;
 destNo PUMnoT;
 destSubAddr subAddrT;
 callHistory charstring;
 origCategory categoryT;
ENDNEWTYPE DivertReqArgs;

NEWTYPE enquireRespArgs STRUCT
 origId PUMnoT;
 enquireResult enquireResultT;
 divertAddr PUMnoT;
 diverSubscrpOpt subsrpOptT;
 destName string;
ENDNEWTYPE enquireRespArgs;

NEWTYPE EnquireRejectArgs
 literals
 pumRegistrationCollision.
 pumUserUnknown,
 pumUsersLocationUnknown,
 incompatibleBasicServices
ENDNEWTYPE EnquireRejectType;

NEWTYPE enquireReqArgs STRUCT
 destNo PUMnoT;
 connType connTypeT;
 origCategory categoryT;
ENDNEWTYPE enquireReqArgs;

Figure 21: Step D:1 Block definitions

Page 46
ETR 298: September 1996

Block PUMI Signals(3)

SIGNAL DIVERTreq (DivertReqArgs);
SIGNAL
 DIVERTresp,
 DIVERTerr;

SIGNALLIST DIVERTrspns =
 DIVERTresp,
 DIVERTerr;

SIGNAL ENQUIREreq (enquireReqArgs);
SIGNAL
 ENQUIREresp (enquireRespArgs),
 ENQUIREreject(enquireRejectArgs);

SIGNALLIST ENQUIRErspns =
 ENQUIREresp,
 ENQUIREreject;

SIGNAL SETUP_INFreq(PUMnoT); SIGNAL SETUP_REJECT_req;

Figure 22: Step D:1 Block signal s

Page 47
ETR 298: September 1996

Process PUMI_FE1 PUMI_idle(3)

/* incoming call execution */

PUMI_idle

SETUPreq (reqArgs)

SETUPreq (reqArgs)
TO PUMI_FE2

WAIT_for_DIVERT

Figure 23: Step D:1 Process PUMI_FE1: PUMI_idle

Page 48
ETR 298: September 1996

Process PUMI_FE1 WAIT_for_DIVERT(3)

WAIT_for_DIVERT

DIVERTreq (DivertVal)

possiblePUMIcall

DIVERTresp
TO PUMI_FE2

'Stimulate release
of original basic

call leg'

SETUP_INFreq (userId)
TO MUPI_FE4

WAIT_for_
SETUP

_RESPONSE

DIVERTerr
TO PUMI_FE2

RELEASEreq

PUMI_idle

(TRUE) (FALSE)

Figure 24: Step D:1 Process PUMI_FE1: WAIT_for_DIVERT

Page 49
ETR 298: September 1996

Process PUMI_FE2 PUMI_idle(3)

/* incoming call detection and control */

PUMI_idle

SETUPreq (reqArgs)From PUMI_FE!
(basic call control)

ENQUIREreq (enquireArgs)
TO PUMI_FE3

WAIT_for_
ENQUIRE
_RESPONSE

Figure 25: Step D:1 Process PUMI_FE2: PUMI_idle

Page 50
ETR 298: September 1996

Process PUMI_FE2 WAIT_for_ENQUIRE_RESPONSE(3)

WAIT_for_
ENQUIRE
_RESPONSE

ENQUIREreject

'Stimulate release of basic call'

PUMI_idle

ENQUIREresp (enquireRespVar)

DIVERTreq (divertReqVar)
TO PUMI_FE1

WAIT_for_
DIVERT

_RESPONSE

Figure 26: Step D:1 Process PUMI_FE2: WAIT_for_ENQUIRE_RESPONSE

6.2.3.2 Step D:2 Process and procedure parameters

Step D:2 is illustrated in subclause 6.2.3.1.

Page 51
ETR 298: September 1996

6.2.3.3 Step D:3 Signal variables

Process PUMI_FE2 PUMI_idle(3)

/* incoming call detection and control */

/* SETUP request parameters */
DCL reqArgs SETUPreqArgs;
/*ENQUIREresp parameters */
DCL enquireRespVar enquireRespArgs;
/*ENQUIREreject parameters */
DCL enquireRejectArgs enquireRejectArgs;

PUMI_idle

SETUPreq
(reqArgs)

From PUMI_FE!
(basic call control)

ENQUIREreq
(enquireArgs)
TO PUMI_FE3

WAIT_for_
ENQUIRE
_RESPONSE

Figure 27: Step D3 Process PUMI_FE2: PUMI_idle

Page 52
ETR 298: September 1996

Process PUMI_FE2 WAIT_for_ENQUIRE_RESPONSE(3)

WAIT_for_
ENQUIRE
_RESPONSE

ENQUIREreject

'Stimulate release
of basic call'

PUMI_idle

ENQUIREresp
(enquireRespVar)

DIVERTreq
(divertReqVar)
TO PUMI_FE1

WAIT_for_
DIVERT

_RESPONSE

Figure 28: Step D3 Process PUMI_FE2: WAIT_for_ENQUIRE_RESPONSE

Page 53
ETR 298: September 1996

6.2.3.4 Step D:4 Formal transitions

Process PUMI_FE2 PUMI_idle(3)

/* incoming call detection and control */

/* SETUP request parameters */
DCL reqArgs SETUPreqArgs;
/*ENQUIREresp parameters */
DCL enquireRespVar enquireRespArgs;
/*ENQUIREreject parameters */
DCL enquireRejectArgs enquireRejectArgs;

/*ENQUIRE request parameters */
DCL enquireArgs EnquireReqArgs;
/* DIVERT request parameters */
DCL divertReqVar divertReqArgs;

/* Step D:4 Formal transitions
 * 1. Replace the informal text in tasks, decisions and answers with
 formal assignments, formal expressions, formal range expressions
 and procedure calls, and identify any new operators used in the formal
 expressions to be added to the sorts of data in step D:6.
 * 2. Define additional variables and synonyms as required.
 * 3. Define additional procedures as required.
 * 4. Add parameters to procedure calls according to procedure definitions
*/

PUMI_idle

From PUMI_FE1
(basic call control)

SETUPreq
(reqArgs)

enquireArgs ! destNo :=
reqArgs ! destNo,

enquireArgs ! origCategory :=
reqArgs ! origCategory

ENQUIREreq
(enquireArgs)
TO PUMI_FE3

WAIT_for_
ENQUIRE
_RESPONSE

Figure 29: Step D4 Process PUMI_FE2: PUMI_idle

Page 54
ETR 298: September 1996

Process PUMI_FE2 WAIT_for_ENQUIRE_RESPONSE(3)

WAIT_for_
ENQUIRE
_RESPONSE

ENQUIREreject()

'Stimulate release
of basic call'

PUMI_idle

ENQUIREresp
(enquireRespVar)

divertReqVar!origNo := reqArgs!origNo,
divertReqVar!origSubAddr := reqArgs!origSubAddr,

divertReqVar!callHistory := reqArgs!callHistory,
divertReqVar!connType := reqArgs!connType

enquireRespVar ! enquireResult
=

CFUactive

divertReqVar ! hostNo
:=

enquireRespVar ! divertAddr

DIVERTreq (divertReqVar)
TO PUMI_FE1

WAIT_for_
DIVERT

_RESPONSE

divertReqVar ! hostNo
:=

enquireRespVar ! origID

(True)

(False)

Figure 30: Step D:4 Process PUMI_FE2: WAIT_for_ENQUIRE_RESPONSE

6.2.3.5 Step D:5 Output and create parameters

Step D:5 is illustrated in subclause 6.2.3.4.

6.2.3.6 Step D:6 Data signatures

Step D:6 is illustrated in subclause 6.2.3.4.

6.2.3.7 Step D:7 Informal data description

Step D:7 is illustrated in subclause 6.2.3.4.

Page 55
ETR 298: September 1996

6.2.3.8 Step D:8 Formal data description

Step D:8 is illustrated in subclause 6.2.3.4.

6.2.3.9 Step D:9 Complete data formalization

Step D:9 is illustrated in subclause 6.2.3.4.

Page 56
ETR 298: September 1996

Annex A: Overview of ETS 300 414

A.1 Introduction

ETS 300 414 specifies rules for the use of the Specification and Description Language (SDL) in
ITU-T Recommendation Z.100 [3] and Message Sequence Charts (MSC) in ITU-T Recommendation
Z.120 [6] in ETSs. It is intended that SDL and MSC diagrams will be used in ETSs, in combination with
text, informal figures and tables. SDL diagrams are to be used to formalize those parts of an ETS that
need to be defined precisely and unambiguously.

Furthermore, it is recommended to use the Abstract Syntax Notation One (ASN.1) in
ITU-T Recommendation X.208 [9] together with SDL. Therefore, this ETS also specifies rules for the use
of ASN.1, when used in combination with SDL. The combined use of ASN.1 and SDL is the subject of
ITU-T Recommendation Z.105 [4].

All rules are aimed at improving the possibilities to validate a standard in an early phase of development,
and to improve the possibilities to test products that claim to implement a standard.

The document describes specification principles that enable validation and testing and applies these
principles for defining rules. The complete list of rules can be found in annex C and some important
elements and briefly described in the continuation of this clause.

consistency An ETS should be internally consistent, i.e. there should be no
contradictions between text paragraphs or between a diagram and the
text or between different diagrams.

clarity An ETS should clearly and unambiguously define requirements on the
telecommunication product it specifies. The specification should be well-
structured, in order to ease reviews by human experts.

correct use of
formalisms

The diagrams presented in an ETS should be syntactically and
semantically correct with respect to the formal language definitions. The
use of concepts that are not supported by tools should be avoided. This
principle is essential to enable the use of computer-based tools for
consistency checking, validation and test derivation.

avoid state
space explosion

An important class of formal validation methods is based on state space
exploration. By specification of infinite numbers of process instances, or
infinite data types, the state space of the system explodes. This prohibits
the use of validation tools that are currently available.

avoid implicit
non-
determinism

If non-determinism is not explicitly specified, it is not easy to discover and
may easily be overlooked by the designer of tests. Furthermore, it is
difficult to determine whether the non-determinism is intentional or is a
mistake in the standard.

indicate
implementation
options

A standard should clearly describe the implementation options. These
options will be reflected in the ICS, that a manufacturer provides to
indicate which options are supported in a product. This is important for
selection of relevant tests for a product.

indicate
normative parts
of standard

A standard should clearly indicate which parts are normative. This
determines which conformance requirements are implied by the standard.

one level of
abstraction

A standard should not specify a system on multiple levels of abstraction.
This is essential in order avoid misinterpretation about which
conformance requirements are implied by the standard.

Page 57
ETR 298: September 1996

A.2 Normative interfaces

A normative interface in a telecommunication product is defined as the physical or software interface of a
product on which requirements are imposed by a telecommunication standard. A telecommunication
standard, or set of related standards that together define a product type, should clearly indicate which
interfaces in the product are considered to be normative.

Normative interfaces should be marked in an SDL diagram with a comment "normative" attached to the
channels that model the interfaces. Figure 31 shows an example.

SYSTEM AccesProtocol

normative informative

SIGNAL
ring, alert_tone, discon_tone, speech(SpeechElement),
onhook, offhook, digit (DigitType), alert, connect,
information(DataElement), disconReq, disconInd,
setup(TelephoneNumber),

/* Protocol describes the access protocol
 * between a telephone and the network.
 */

Telephone Network
UserInterface

ring,
alert_tone,
discon_tone,
speech

onhook,
offhook,
digit,
speech

NetworkInterface

setup,
information,
disconReq

alert,
connect,
information,
disconInd

Figure 31: A system diagram indicating the normative interfaces of a system

A.3 Selection of SDL concepts

On the basis of principles listed above, the set of SDL concepts as defined in
ITU-T Recommendation Z.100 [3] has been partitioned as shown in table 1. The motivations for such
decision can be found in ETS 300 414 [1]. It should be noted that object-oriented features of SDL are not
dealt with in ETS 300 414 [1].

Page 58
ETR 298: September 1996

Table 1: Selection of SDL concepts

Unrestricted use
allowed

Restricted use
allowed

Not allowed

System or block
diagrams

block, channel,
comment, package,
process, process create
line, select, signal list,
signal route, text, text
extension

block substructure,
data type definition,
macro call, signal
declaration

channel partitioning,
signal refinement

Process or Procedure
diagram

comment, input, join,
label, optional transition,
priority input, process
creation, process start,
process stop, procedure
call, procedure return,
procedure reference,
procedure start, save,
state, synonym , text,
text extension, variable,

continuous signal ,
decision, macro call,
output, task, timer

enabling condition,
import and export,
internal input and
output, service, view
and reveal

Data type diagram predefined data abstract data, ASN.1
type definition

name class literal

Table 1 gives an overview of the selection of SDL concepts. It should be noted that the object oriented
extensions in SDL 1992 are not considered. This is because very little experience in using them exits:

- the concepts in the column "Unrestricted use allowed" are the concepts that can be used without
any restrictions, i.e. they are not considered harmful for testability or validation, or they were
considered indispensable by a panel of experienced SDL users;

- the concepts in the column "Restricted use allowed" are concepts that, when used in a specific way,
influences testability or validation. For each such concept a rule is given restricting the allowed use;

- the concepts in the column "Not allowed" are concepts that are harmful for testability or validation,
or were considered superfluous.

A.4 Selection of Message Sequence Chart concepts

ITU-T Recommendation Z.120 [6] is used to describe sequences of events that can be performed by the
standardized system. MSCs are useful to give an overview or used to guide the selection of test purposes.

MSCs are closely related to ITU-T Recommendation Z.100 [3]: SDL diagrams give the complete
behaviour of the standardized system, while MSCs give typical cases. The sequence of events in an MSC
should be a part of the behaviour that is defined in the SDL diagrams. Consistency between SDL and
MSCs can be checked automatically with tools.

Table 2 gives an overview of the MSC concepts that are allowed in combination with SDL.

Table 2: Overview of selection of MSC constructs for use in combination with SDL

unrestricted use allowed restricted use allowed not allowed
action process creation co-region
comment instance sub MSC
condition message
process stop timer

Figure 32 gives an example of an MSC of the multi-party supplementary service in GSM. It is the system
functions. MSCs contribute to the testability of a standard, because it may be shown that the visitor's
location register is consulted before a service is provided, and that a service request is rejected if the
subscriber is not authorized for use of the service.

Page 59
ETR 298: September 1996

MSC MPTY_req_unsuccessful

build_MPTYreq

build_MPTYreject

Mobile System A Mobile Switching Centre Visitor Location Register

info_req

info_ack

Call A-B on hold, call A-C active, subscriber
A wants to initiate a multi party conversation

MAP 026

Figure 32: Example of MSC showing an unsuccessful request for a GSM multi party call

Page 60
ETR 298: September 1996

A.5 Selection of ASN.1 concepts

ITU-T Recommendation X.208 [9] is widely used to define structure messages that are exchanged by
telecommunication systems. While it is also possible to use SDL data types for this purpose, practice
shows that ASN.1 is preferred. In fact, many ETSs do already use ASN.1 in combination with SDL.
Instead of forbidding what is done in practice, this ETS regulates such combined use of SDL and ASN.1.
The approach taken in ETS 300 414 [1] largely contributed to acceptance of the
ITU-T Recommendation Z.105 [4].

Table 3 gives an overview of ASN.1 concepts that can be used without restrictions in combination with
SDL, concepts that can be used if the rules that restrict their use are met, and concepts that should not be
used at all.

Table 3: Overview of selection of ASN.1 concepts to be used in combination with SDL

unrestricted use allowed restricted use allowed not allowed
ASN.1 module definition ASN.1 identifier names SET
IMPORTS, EXPORTS SEQUENCE ASN.1 macro (for

example
NULL SEQUENCE OF the operation macro)
BOOLEAN SET OF ASN.1 comment
INTEGER ASN.1 tags value notation of
REAL MIN, MAX ASN.1 ANY type
ENUMERATED PLUS-INFINITY
OBJECT IDENTIFIER MINUS-INFINITY
BIT STRING, OCTET STRING ANY
The different character strings
CHOICE
default and optional component
subtyping

Page 61
ETR 298: September 1996

Annex B: Overview of methodology

B.1 The methodology activities

Figure 33 shows the methodology1) activities framework.

validate

perform
write

verify
Methodology
activty

Criteria before
starting an

activity
specification

Criteria for
adequate

specification

Checklist of questions - Requirements collection
 - Classific ation
 - Draft design
 - Formalization
 - Derivation of validation model
 - Documentation

- Collected requirements - Checklist of questions
- clasiified specification
- Draft design specification
- Formal specification
- Validation model
- ETSI specification

Legends:

document activity checking process methodology action

form
a

lism
 to co

m
pletness

Figure 33: The methodology activities

As shown in figure 33, the result of performing an activity (requirements collection, classification, draft
design, formalization, derivation of a validation model, or documentation) is a specification (collected
requirements, classified specification, draft design specification, formal specification, validation model,
ETS), consisting of a set of descriptions containing the knowledge acquired during the specification
production.

Before and after each activity the methodology focuses on the definition of general criteria enabling the
standard developer to follow closely the good performance of all the methodology processes. The criteria
are present assisting the standard developer to determine (make a judgement) whether it is more
appropriate to perform a specific activity or to skip it, helping to decide which activity is the appropriate
entry point in the methodology. There are two types of criteria:

- criteria that define what information is needed in the input specification before an activity can be
started;

- criteria that allow the detection and the handling of possible inconsistency and completeness in the
analysis of the output specification after the performing of an activity.

If the judgement is in favour, the standard developer can proceed directly to the next activity. If the
judgement is against, he has to come back to the activity which provided the output specification.

For example, at a certain stage of his project the standard developer may take the advantage of a
specification already described in ITU-T Recommendation Z.100 [3]. In this situation, he has to determine
if this specification:

- contains as much formalized information as possible to be unambiguous, complete,
understandable, verifiable, well-organized, executable, etc.,

- still fulfils the project requirements,
- etc.

1) This annex is an overview of work published in ETSI/MTS(94) 010.

Page 62
ETR 298: September 1996

The six activities of the methodology are:

- requirements collection :
to verify that all the requirements collected respect quality attributes. This is to check that these
requirements are reasonably described;

- classification :
to get a first understanding, structuring the informal specification, and to re-express it in terms of
concepts of the application domain;

- draft design :
to increase such understanding; the standard developer can analyse different perspectives of the
system, using one or more models that describe the system partially;

- formalization :
once he has obtained a thorough understanding of the problem, the standard developer actually
writes down the formal specification using the formal technique of ITU-T Recommendation
Z.100 [3];

- derivation of the validation model :
once the specification has been formalized, the standard developer provides a detailed and an
executable (by the support of tools) version of the specification;

- documentation :
from a formalized specification, the standard developer formats this according to standard rules
used at ETSI (in CEN/CENELEC Internal Regulations [2]).

B.2 The requirement collection activity

Defined steps for adjusted specification (to completness)

(6)

(6)
in favour
(validate)

write

requirements
collection

Collected
Requirements
Specification

against

verifiy
Quality criteria
for requirements

Criteria before
classification

(7.12)

(6.3 & annex C)

F
or

m
al

is
m

 (
to

 c
om

pl
et

ne
ss

)

Figure 34: The requirements collection activity

The requirements collection activity determines whether relevant collected requirements (all the externally
observable behaviours and characteristics expected of a protocol or a service) satisfy quality criteria. If
not, the methodology considers that all the available and the relevant requirements have not been
gathered. On the contrary, the standard developer may start the next activity (classification).

The requirements collection activity, as shown in figure 34, explores thoroughly the quality attributes in a
collected requirements specification.

Any quality attribute can be achieved, but this may be at the expense of other attributes. On any one given
requirement the standard developer needs to agree as to which quality attributes are most important and
strive for those.

For example, if the standard developer removes all ambiguity, so much formality would be added to the
collected requirements specification that they would no longer be understandable by a non expert. If the
standard developer removes all redundancy, the collected requirements specification becomes difficult to
read. If completeness is taken to extremes, conciseness will suffer.

Page 63
ETR 298: September 1996

B.3 The classification activity

Criteria before
c lass ific at ion

c lass ific at ion
ac tivit y

c lass ified
spec ification

criteria for
adequate
c lass ification

in favour

agains t

against

verify

Criteria before
draft design

write

in favour
(va lidate)

D e fined s teps fo r ad jus ted spec ifica tion (to com ple teness)

F
o

rm
a

li
s

m
 (

to
 c

o
m

p
le

te
n

e
s

s
)

(8.1.2)

(7.1.2)

(7 & annex D)

(7.5 & annex D.4)

(7 & annex D)

Figure 35: The classification activity

The classification activity, as shown in figure 35, is the stepwise process of inspecting, identifying,
defining, analysing and organising a set of application domain information elements, from an input
specification (collected requirements, and/or other input documents), that fulfil the previously defined
collected requirements, and then re-expressing them into a well-structured (classified) specification.

For example, in the data communication application domain, there may be defined application domain
elements like "transport protocol data unit", "transport service primitive", "transport protocol entity", etc.
These information elements are related to the collected requirements.

Any method may be used by the standard developer to classify the input specification. The methodology
offered by PT60 suggests that the classification process may be based on an object-oriented approach.

A classified specification is considered as adequate (complete, consistent, sufficiently structured, with a
well-defined terminology) for the other next activities to be completed, when it complies with a checklist of
criteria. In this case the classified specification can be regarded as a structured and referenced common
information base for all standard developers.

During the classification process questions are raised and decisions are made. These are related to the
contents of and the interpretation of the input specification.

Page 64
ETR 298: September 1996

B.4 The draft design activity

Criteria before
draft design

draft d esign
activity

draft d esig n
sp ecification

criteria for
adeq ua te
draft d esignag ain st

Criteria b efo re
form a liza tio n

ag ain st

w rite verify

in favour
(val idate)

in favo ur

D e fined s teps fo r adjusted spec ifica tion (to com p le teness)
F

o
rm

a
li

s
m

 (
to

 c
o

m
p

le
te

n
e

s
s

)

(9.1 .2)

(8.1.2)

(8) (8)

(8.9.2)

Figure 36: The draft design activity

The draft design process, as shown in figure 36, analyses aspects of the specification under development
using various methods, called draft design methods. This analysis consists of building different views of
(parts of) the classified specification in order to get a better understanding, to derive properties and/or to
detect any ambiguities, incompleteness or contradictions. A produced specification expressed and
structured according to the notation of a draft design method is called a draft design specification. The
draft design specification describe the system partially using models.

To build each view, the standard developer uses a draft design method which is suitable to explore that
particular perspective. For example, Message Sequence Charts are a quite adequate method to describe
the dynamic aspects of an interface between some parts of a system under development. It should be
noted that the set of views may overlap.

The set of views are recorded and linked with the corresponding parts of the classified specification.

During the draft design process questions and decisions are also made. These are recorded and linked
with the relevant parts of the specification.

The methodology includes guidelines to choose the best set of draft design methods to support various
analysis and to prepare for building the formal specification.

Facilities to define the several views, to link them with the corresponding parts of the classified
specification are used throughout the draft design process.

The methodology includes the following draft design methods:

- entity Relationship Diagram (ERD): modelling types of entities and their relevant attributes, as well
as types of relationships among instances of given entity types;

- abstract Syntax Notation One (ASN.1): standard notation formalising the structure and format of
data in terms of elementary or predefined ones (ITU-T Recommendation X.208 [9]);

- message Sequence Chart (MSC): specific cases (usually typical, with many exceptions uncovered),
of temporal and dynamic message interaction through interfaces between entities of the system
under specification ITU-T Recommendation Z.120 [6];

- specification and Description Language (SDL): partial SDL specification of the behaviour of a
system ITU-T Recommendation Z.100 [3].

Page 65
ETR 298: September 1996

B.5 The formalization activity

Criteria befo re
form a liza tio n

formalization
activity

formal S Dl
s pe cific atio n

cr ite ria for
ade quate
forma liza tio nagainst

aga inst

write ver ify

D e fined steps fo r adjus ted spec ifica tion (to com ple teness)
F

o
rm

a
li
s

m
 (

to
 c

o
m

p
le

te
n

e
s

s
)

der ivat io n o f
a va lid at ion
m od el

in favo ur
in favo ur
(va lid ate)

docum en ta tio n
ac tivity

(9 .1.2)

(9) (9)

(9.8 .2)

(11)(10)

Figure 37: The formalization activity

The formalization process, as shown in figure 37, includes:

- the formal SDL description;
- the analysis of the system guided by the use of SDL: understanding increases and analysis takes

place as the SDL is produced. If classification or draft design is omitted then analysis during
formalization is more important. The guidelines associated with the formalization steps cover the
analysis that is required;

- the checking of consistency: the creating of the SDL description can find inconsistencies and
ambiguities in the draft designs, classified information and collected requirements. For each of
these inputs, questions, answers, and items to be considered are recorded during formalization.
This can lead to changes in any of the inputs and (except where an engineering error has been
made in draft design or classification) the collected requirements should be changed.

For example, the formalization activity helps the standard developer on how to avoid pitfalls in
ITU-T Recommendation Z.100 [3], how to structure system descriptions in SDL, what is the right level of
abstraction using SDL, in which order to produce the different kinds of SDL diagrams, etc.

Page 66
ETR 298: September 1996

B.6 The derivation of a validation model activity

de riva tion of
a va lid ation
m ode l

va lid at ion
m odelwr ite

D efined s teps fo r ad jus ted spec ifica tion (to com ple teness)

F
o

rm
a

li
s

m
 (

to
 c

o
m

p
le

te
n

e
s

s
)

fo rm al SD l
spec ificat ion

execute

com pare

tool

ETSI
deliverable

(12)

(11)(9)

(10)

(10)

Figure 38: The derivation of a validation model activity

As shown in figure 38, a validation model consists of the SDL description in the ETS (documentation
activity) and a minimum of modifications necessary to make the SDL model executable by a tool.

These modifications can be drawn from the formalized SDL model (extracted from the formalization
activity), assuming that the formalized model is executable, and in some cases the validation model can
be identical to the formalized model.

If the formalized model is not executable, or if it is executable but not practical for validation, a separate
model is derived.

B.7 The documentation activity

docum entation
activi ty

ETS I
deliverablewrite

D efined s teps fo r ad jus ted spec ification (to com pleteness)

F
o

rm
a

li
s

m
 (

to
 c

o
m

p
le

te
n

e
s

s
)

c la ssifie d
sp ec ification

dra ft des ign
sp ec ification

forma l S DL
sp ec ification

organise

incorporate

incorporate

incorporate

(11)

(8)

(9)

(7)

(11)

Figure 39: The documentation activity

The documentation activity, as shown in figure 39, organizes and formats all contents (text, figures, tables,
etc.) according to ETSI standards pre-defined rules (CEN/CENELEC Internal Regulations [2]) from all
specifications provided by the other activities.

Page 67
ETR 298: September 1996

The documentation activity assure that it:

- outlines the ETS organising the contents of recommended parts into required clauses and
subclauses;

- extracts material from existing text and diagrams (SDL);
- provides needed text (introduction, text produced during other activity processes);
- includes a statement of conformance to the methodology recommendations.

Page 68
ETR 298: September 1996

Annex C: List of rules of ETS 300 414 [1]

Rule 1 Only the graphical representation of SDL should be used.

Rule 2 The following SDL symbols should not be used in ETSs:

- channel partitioning;
- signal refinement;
- enabling condition;
- internal input and output;
- view and reveal;
- import and export;
- service;
- name class literals.

Rule 3 A system diagram should be used to describe how the system is composed of
functional units (modelled with blocks).

Rule 4 In a system diagram, the blocks, channels and signal definitions should
precede the data definitions.

Rule 5 Block diagrams should be used to describe how the functional units are
composed of processes or blocks.

Rule 6 A block diagram in the normative part of a specification should not have
alternative sub-block definitions, i.e. the feature of SDL (in
ITU-T Recommendation Z.100 [3] subclause 3.2.2) to describe the
decomposition of a block in blocks as well as in processes is not allowed.

Rule 7 Implicit non-determinism arising as an effect of using channels with delay should
be avoided.

Rule 8 To every normative channel of the standardized system the comment,
"normative", should be attached.

Rule 9 The data types of all parameters of all signal s relevant to the system and
conveyed over normative channels should be specified.

Rule 10 The data types of parameters of signal s that are conveyed over normative
channels should have a finite size.

Rule 11 The selection expression in a select symbol should depend on implementation
options.

Rule 12 If the process diagram contains a create symbol, this shall be shown in the
block diagram by using the create line symbol.

Rule 13 In the normative part of a specification, the maximum number of instances of a
process should be limited.

Rule 14 A comment should be attached to a spontaneous transition that explains the
condition for the transition to fire.

Rule 15 The Boolean expression in a continuous signal should not contain NOW, ANY,
imported variables, or remote procedure calls.

Rule 16 The real time unit of a timer should be supplied using a comment associated
with the timer definition.

Rule 17 A timer should not be started as "set(<Time>, <TimerIdentifier>)" where <Time>
is an absolute value.

Page 69
ETR 298: September 1996

Rule 18 The condition of the option symbol will depend on implementation options.

Rule 19 Task symbols with informal text should not occur in the normative part of a
standard.

Rule 20 Decisions with informal text should not occur in the normative part of the final
version of a standard.

Rule 21 If a decision is non-deterministic (using any), a comment should be given
explaining the condition.

Rule 22 The receiving process instance should always be uniquely identified in order to
avoid non-deterministic behaviour.

Rule 23 Message sequence charts should be used to give at least one example of
message exchange for each required system function. The message sequence
charts should also give examples of message exchange in exceptional
situations.

Rule 24 Message sequences shown in MSCs should be in accordance with the allowed
behaviour of instances specified in the related SDL diagrams.

Rule 25 The following MSC symbols should not be used in ETSs:

- co-region;
- sub-MSC.

Rule 26 The instances shown in MSCs should be related to system, blocks, processes
or parts of the environment (related to channels connected with the
environment) in the related SDL specification.

Rule 27 Every message in an MSC should be defined in a signal definition in the related
SDL system or block diagram and as an input and/or output in the related SDL
process diagram.

Rule 28 A timer in an MSC must be defined as a timer in a process that occurs in the
SDL diagram that is related to the MSC instance.

Rule 29 The created MSC instance should be of type "process".

Rule 30 The following ASN.1 concepts should not be used in combination with
SDL: ASN.1 SET, ASN.1 macro, value notation of ASN.1 ANY type, ASN.1
comment.

Rule 31 ASN.1 types should not be defined with names that differ from the names of
other defined types only in the case of the letters that compose the name.

Rule 32 Names of ASN.1 identifiers that are used in combination with SDL should not
contain dashes ("-").

Rule 33 Names of ASN.1 identifiers that are used in combination with SDL may contain
underscores ("_").

Rule 34 An ASN.1 module that is directly or indirectly imported in an SDL diagram
should meet the rules stated in this document, with the exceptions that ASN.1
comments are allowed and names of identifiers are allowed to contain dashes.

Rule 35 Recursive ASN.1 data structures should not be used in combination with SDL
diagrams.

Rule 36 In a type definition, an identifier should be provided for every component type of
an ASN.1 SEQUENCE type.

Page 70
ETR 298: September 1996

Rule 37 An ASN.1 type should not be composed from two subtypes using the or operator
("|").

Page 71
ETR 298: September 1996

Annex D: List of rules in formalization

Rule 1 The system boundary defines what is going to be specified (described).
Communicating entities within a system have to be specified (described)
irrespective of whether they are normative or informative. Entities outside the
boundaries are assumed to exist, but cannot be described in SDL. The
communication is possible only by means of exchanged discrete messages.
The message in SDL is called signal;

Rule 2 The unit for time data should be recorded in a comment in the system diagram.

Rule 3 The textual definitions of a diagram should be placed in text symbols inside
diagrams.

Rule 4 Each type of definition (for example: signal definitions, signallist definitions,
data definitions, etc.) should be placed in a different text symbol. If textual
definitions occupy more than 50 % of a diagram, it should have separate pages
for each type of definition.

Rule 5 There should be no more than five blocks at the system level (or directly
enclosed within a block).

Rule 6 A definition should have the smallest scope that includes all uses of the defined
item.

Rule 7 If a block (process or procedure) is informative and is not part of an enclosed
informative block (process or procedure), it should have the annotation
"informative" in the diagram referencing it or in its referenced diagram or in both
places.

Rule 8 There should be only one channel between two blocks.

Rule 9 Every channel that is normative should have the comment "normative" attached.

Rule 10 No more than three signal s (or signallists) should be listed in a signallist
symbol, instead use a signallist attached to the channel. In principle it is better
to use signallists consistently.

Rule 11 The signallists, signal s and data used in all communication of a system should
be defined in one (or more) text symbol(s) separate from other definitions.

Rule 12 The diagrams should be nested by reference rather than direct enclosure.

Rule 13 The number of channels from each block should be no more than five.

Rule 14 For each block, at least one process should have its initial number of instances
greater than zero, so that it can create other instances in the block.

Rule 15 The number of process definitions in each block should be no more than five.

Rule 16 Spontaneous transition should not be used in normative parts of the standard.

Rule 17 The MSC should either be correct traces of the handling of messages by the
SDL system or be clearly annotated to indicate how and why they differ from the
SDL behaviour.

Rule 18 All states in a process should be reachable from the start of the process.

Rule 19 A procedure that is exported by a process (to be used as a remote procedure)
should not be saved in every state of that process.

Page 72
ETR 298: September 1996

Rule 20 Each signal received by the process should have at least one input leading to a
non empty transition.

Rule 21 if bit tables have been used to define data then these should be converted to
ITU-T Recommendation X.208 [9] or ITU-T Recommendation Z.100 [3].

Rule 22 the names of existing sorts of data should not be used for new sorts of data
even if they have different scopes.

Rule 23 a process parameter should not contain the PId of the process that has created
it because this value is returned by parent operator.

Rule 24 A signal parameter should not contain the PId of the process that has sent the
signal because this is value is returned by sender operator.

Rule 25 a value or decision that is non-deterministic (using any) should always have a
comment attached explaining how the choice is made.

Rule 26 If a parameter is omitted in an output, there should not be a corresponding input
that expects a value for this parameter.

Rule 27 Addressing information should always be defined in an output.

Rule 28 SDL axioms should not be used to define operator properties.

Page 73
ETR 298: September 1996

Annex E : Allowed symbols

Table 4: Symbols allowed in a system diagram

<block name>

Block symbol <text> Text symbol

<channel name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Channel with delay
symbol

<channel name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Channel
without delay
symbol

/*** SIGNAL DEFINITIONS ***/

<signal name>(<data type>, <data type>, ...),
<signal name>(<data type>, <data type>, ...),
... ;

SIGNAL

Signal definitions in
text symbol

/*** SIGNALLIST DEFINITIONS ***/

<signallist name> = <signal name, ...;

SIGNALLIST

Signallist
definitions in
text symbol

SELECT IF (<boolean

expression>)

Select symbol

<data type definition>;
<data type definition>;

/*** DATA TYPE DEFINITIONS ***/
Data type
definitions in
text symbol

<procedure
name>

Procedure
reference symbol

<macro name>
(<par1>, ..)

Macro call
symbol

<extended text>
Text extension
symbol <free text>

Comment
symbol

Table 5: Additional symbols that can be used in a block diagram

<process name>

(<init>, <max>) Process
symbol

<signal route name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Signal route symbol

Process create
line symbol

Page 74
ETR 298: September 1996

Table 6: Allowed symbols in process diagrams

Process start symbol Process stop
symbol

<state>
State symbol /*** VARIABLE DECLARATIONS ***/

DCL
<variable> <type>,

...;

Variable
declarations in text
symbol

<signal>
<parameters>

Input symbol
<signal>
<parameter>

Output symbol

<signal>
<parameters>

Priority input symbol <boolean
expression>

Continuous signal
symbol

NONE
Spontaneous
transition symbol <signal>,

...

Save symbol

<expression>
Decision symbol

<simple
expression>

Option symbol

<procedure>
<parameters>

Procedure call
symbol

<process>
<parameters>

Process creation
symbol

<variable> :=
<expression>

Task symbol
<procedure>

Procedure
reference symbol

<extended text>
Text extension
symbol <free text>

Comment symbol

<label>
Join symbol

The symbols that can be used in MSCs are shown in table 7.

Page 75
ETR 298: September 1996

Table 7: Allowed symbols in MSCs

<instance name>

<instance type>

Instance symbol
<signal name>

<signal name>

Signal
exchange

<extended text>
Text extension
symbol <free text>

Comment
symbol

<timer name>
Timer symbol <condition name> Condition

symbol

<free text> Action symbol

<process name>

PROCESS

Process creation
line symbol

Process end
symbol

Page 76
ETR 298: September 1996

Annex F: Bibliography

- Belina, F., Hogrefe, D., Sarma, A. (1991): "SDL with Applications from Protocol Specification".

- Bræk, R., & Haugen, Ø.(1993): "Engineering real time systems: An object-oriented methodology
using SDL".

- Davis A. et al.: Proc. Software Metrics Symp., IEEE CS Press (1993): "Identifying and Measuring
Quality in a Software Requirements Specification".

- Færgemand, O. (1991): "Stepwise production of an SDL description" in "Formal Description
Techniques III".

- Rumbaugh, J.(1991): "Object-Oriented Modeling and Design".

- Sarracco, R. et al. (1989): "Telecommunication system engineering using SDL".

- Steedman, D. (1990): "Abstract Syntax Notation One (ASN.1) - The tutorial and reference",
Technology Appraisals Ltd.

- Lacoste, Gerard (1993): "The SCORE Service Creation Process Model" IBM.

- Reed, R. et al. (editors) (1993):."Specification and programming Environment for Communication
Software".

- SPECS-Specification Generation External deliverable D.WP3.8 (1992): "Final Methods and Tools
for the Generation of Specifications", GSI-Tecsi.

- SPECS-Specification Handling External deliverable D4.15 (1992): "Final Methods and Tools for the
handling of SDL of Specifications", GSI-Tecsi.

- Færgemand, O. et al., (1994):."Systems Engineering Using SDL-92".

- Tilanus, P. (1994): "How to get Complete ADT Definitions? A Tutorial" in "SDL 91 Evolving
Methods".

- Turner, K. (editor), (1992): "Using Formal Description Techniques", John Wiley & Sons.

- West, C. Computer Networks and ISDN Systems, 24, 219-242 (1992): "Protocol validation -
principles and applications".

Page 77
ETR 298: September 1996

History

Document history

September 1996 First Edition

ISBN 2-7437-0707-0
Dépôt légal : septembre 1996

	Foreword
	1	Scope
	2	References
	3	Definitions and abbreviations
	3.1	Definitions
	3.1.1	External definitions
	3.1.2	Internal definitions

	3.2	Abbreviations

	4	Introduction
	5	Formalization of SDL (with ASN.1 and MSC)
	5.1	Criteria to start formalization
	5.2	Formalization steps
	5.3	Structure steps (S-steps)
	5.3.1	Step S:1 Boundary and environment of the system
	5.3.2	Step S:2 Discrete system communications
	5.3.3	Step S:3 System parts
	5.3.4	Step S:4 Communication paths between parts
	5.3.5	Step S:5 Associating signals to communication paths
	5.3.6	Step S:6 Information hiding and sub-structuring
	5.3.7	Step S:7 Block constituents
	5.3.8	Step S:8 Local signals in a block

	5.4	Behaviour steps (B-steps)
	5.4.1	Step B:1 Set of signals to a process
	5.4.2	Step B:2 Skeleton processes
	5.4.3	Step B:3 Informal processes
	5.4.4	Step B:4 Complete processes

	5.5	Data steps (D-steps)
	5.5.1	Step D:1 Signal parameters
	5.5.2	Step D:2 Process and procedure parameters
	5.5.3	Step D:3 Signal variables
	5.5.4	Step D:4 Formal transitions
	5.5.5	Step D:5 Output and create parameters
	5.5.6	Step D:6 Data signatures
	5.5.7	Step D:7 Informal data description
	5.5.8	Step D:8 Formal data description
	5.5.9	Step D:9 Complete data formalization

	5.6	Results of formalization
	5.7	Criteria for adequate formalization

	6	Examples
	6.1	Presentation of the PUMI example
	6.2	PUMI example: the stepwise formalization
	6.2.1	Structure-steps (S-steps)
	6.2.1.1	Step S:1 Boundary and environment of the system
	6.2.1.2	Step S:2 Discrete system communications
	6.2.1.3	Step S:3 System parts
	6.2.1.4	Step S:4 Communication paths between parts
	6.2.1.5	Step S:5 Associating signals to communication paths
	6.2.1.6	Step S:6 Information hiding and sub structuring
	6.2.1.7	Step S:7 Block constituents
	6.2.1.8	Step S:8 Local signals in a block

	6.2.2	Behaviour-steps (B-steps)
	6.2.2.1	Step B:1 Set of signals to a process
	6.2.2.2	Step B:2 Skeleton processes
	6.2.2.3	Step B:3 Informal processes
	6.2.2.4	Step B:4 Complete processes

	6.2.3	Data-steps (D-steps)
	6.2.3.1	Step D:1 Signal parameters
	6.2.3.2	Step D:2 Process and procedure parameters
	6.2.3.3	Step D:3 Signal variables
	6.2.3.4	Step D:4 Formal transitions
	6.2.3.5	Step D:5 Output and create parameters
	6.2.3.6	Step D:6 Data signatures
	6.2.3.7	Step D:7 Informal data description
	6.2.3.8	Step D:8 Formal data description
	6.2.3.9	Step D:9 Complete data formalization

	Annex A:	Overview of ETS€300€414
	A.1	Introduction
	A.2	Normative interfaces
	A.3	Selection of SDL concepts
	A.4	Selection of Message Sequence Chart concepts
	A.5	Selection of ASN.1 concepts

	Annex B:	Overview of methodology
	B.1	The methodology activities
	B.2	The requirement collection activity
	B.3	The classification activity
	B.4	The draft design activity
	B.5	The formalization activity
	B.6	The derivation of a validation model activity
	B.7	The documentation activity

	Annex C:	List of rules of ETS€300€414 [1]
	Annex D:	List of rules in formalization
	Annex E :	Allowed symbols
	Annex F:	Bibliography
	History

